15.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:萬噸)對價格y(單位:千元/噸)和年利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如表:
x12345
y7.06.55.53.82.2
(1)求關(guān)于的線性回歸方程$\hat y=\hat bx+\hat a$;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)計當(dāng)年產(chǎn)量為多少時,年利潤z取到最大值?(保留兩位小數(shù))
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

分析 (1)根據(jù)回歸系數(shù)公式計算回歸系數(shù),得出回歸方程;
(2)將利潤z表示為x的二次函數(shù),利用二次函數(shù)的性質(zhì)得出極大值點.

解答 解:(1)$\overline{x}=3$,$\overline{y}=5$,$\sum_{i=1}^5{{x_i}{y_i}}=62.7$,$\sum_{i=1}^5{{x_i}^2}=55$,
∴$\hat b=-1.23$,$\hat a=8.69$,
∴線性回歸方程為:$\hat y=8.69-1.23x$.
(2)年利潤z=x(8.69-1.23x)-2x=-1.23x2+6.69x.
所以x=2.72時,年利潤z最大.

點評 本題考查了線性回歸方程的求解,函數(shù)的最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=$\sqrt{tanx-1}$的定義域是[$\frac{π}{4}+kπ,\frac{π}{2}+kπ$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定積分${∫}_{0}^{π}$(sin2x+2x)dx等于( 。
A.$\frac{π}{2}$+π2B.π+π2C.$\frac{π}{2}$+$\frac{{π}^{2}}{2}$D.π+$\frac{{π}^{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a,b∈R,直線y=ax+b+$\frac{π}{2}$與函數(shù)f(x)=tanx的圖象在x=-$\frac{π}{4}$處相切,設(shè)g(x)=ex+bx2+a,若在區(qū)間[1,2]上,不等式m≤g(x)≤m2-2恒成立,則實數(shù)m( 。
A.有最小值-eB.有最小值eC.有最大值eD.有最大值e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一只小蜜蜂在一個棱長為30的正方體玻璃容器內(nèi)隨機飛行,若蜜蜂在飛行過程中與正方體玻璃容器6個表面中至少有一個的距離不大于10,則就有可能撞到玻璃上而不安全;若始終保持與正方體玻璃容器6個表面的距離均大于10,則飛行是安全的,假設(shè)蜜蜂在正方體玻璃容器內(nèi)飛行到每一位置可能性相同,那么蜜蜂飛行是安全的概率是$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在回歸分析中,殘差圖的縱坐標(biāo)是(  )
A.解釋變量B.預(yù)報變量C.殘差D.樣本編號

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.過點(1,0)作曲線y=x3的切線,切線方程為( 。
A.y=0或3x-y-3=0B.y=0或27x-4y-27=0
C.y=0或x=1D.x=1或3x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對具有線性相關(guān)關(guān)系的變量x,y,測得一組數(shù)據(jù)如表所示,由最小二乘法求得回歸方程為$\widehaty=0.95x+2.6$,則表中看不清的數(shù)據(jù)為( 。
x0134
y2.24.36.7
A.4.8B.5.2C.5.8D.6.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某公益活動為期三天,現(xiàn)要為6名志愿者安排相應(yīng)的服務(wù)工作,每人工作一天,且第一天需1人工作,第二天需2人工作,第三天需3人工作,則不同的安排方式有60種.(請用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案