【題目】從1,2,3,4,5,6這六個(gè)數(shù)中,不放回地任意取兩個(gè)數(shù),每次取一個(gè)數(shù),則所取的兩個(gè)數(shù)都是偶數(shù)的概率為( )
A.
B.
C.
D.
【答案】D
【解析】解:從1,2,3,4這4個(gè)數(shù)中,不放回地任意取兩個(gè)數(shù),共有
(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5)共30種
其中滿足條件兩個(gè)數(shù)都是偶數(shù)的有(2,4),(2,6),(4,2),(4,6),(6,2),(6,4)共6種情況
故從1,2,3,4,5,6這六個(gè)數(shù)中,不放回地任意取兩個(gè)數(shù),每次取一個(gè)數(shù),則所取的兩個(gè)數(shù)都是偶數(shù)的概率為P=
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某電視臺(tái)綜藝節(jié)目舉辦的挑戰(zhàn)主持人大賽上,七位評(píng)委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( )
A.84,4.84
B.84,1.6
C.85,4
D.85,1.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 且滿足不等式 .
(1)求不等式 ;
(2)若函數(shù) 在區(qū)間 有最小值為 ,求實(shí)數(shù) 值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AB=AC=2,AA1=3,D為BC中點(diǎn),
(1)證明:A1C∥平面B1AD;
(2)求二面角B1﹣AD﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線x+y﹣1=0與橢圓 相交于A,B兩點(diǎn),線段AB中點(diǎn)M在直線 上.
(1)求橢圓的離心率;
(2)若橢圓右焦點(diǎn)關(guān)于直線l的對(duì)稱點(diǎn)在單位圓x2+y2=1上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若f(x)是定義在R上的偶函數(shù),求實(shí)數(shù)a的值;
(2)在(1)的條件下,若g(x)=f(x)﹣2,求函數(shù)g(x)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A、B是圓上兩動(dòng)點(diǎn),且滿足∠APB=90°,求矩形APBQ的頂點(diǎn)Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是直角梯形,AD⊥AB,AB∥DC,PA⊥底面ABCD,點(diǎn)E為棱PC的中點(diǎn).AD=DC=AP=2AB=2.
(1)證明:BE⊥平面PDC;
(2)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F﹣AD﹣C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com