16.若菱形ABCD的邊長(zhǎng)為2,則|$\overrightarrow{AB}$-$\overrightarrow{AD}$+$\overrightarrow{CD}$|=( 。
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

分析 利用向量的運(yùn)算法則將|$\overrightarrow{AB}$-$\overrightarrow{AD}$+$\overrightarrow{CD}$|化簡(jiǎn),利用菱形ABCD的邊長(zhǎng)為2得到向量模的值.

解答 解:∵菱形ABCD的邊長(zhǎng)為2,
∴|$\overrightarrow{AB}$-$\overrightarrow{AD}$+$\overrightarrow{CD}$|=|$\overrightarrow{AB}$+$\overrightarrow{DA}$+$\overrightarrow{CD}$|=|$\overrightarrow{BC}$|=2.
故選:D.

點(diǎn)評(píng) 本題考查了向量的三角形法則的運(yùn)用以及向量的模的意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.命題“$?x>0,x+\frac{1}{x}≥2$”的否定是$?x>0,x+\frac{1}{x}<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在平面直角坐標(biāo)系中,A(1,-1),B(1,3),點(diǎn)C在直線x-y+1=0上.
(1)若直線AC的斜率是直線BC的斜率的2倍,求直線AC的方程;
(2)點(diǎn)B關(guān)于y軸對(duì)稱點(diǎn)為D,若以DC為直徑的圓M過(guò)點(diǎn)A,求C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若該市有110萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說(shuō)明理由;
(Ⅲ)若該市政府希望使80%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若角α是第四象限角,則角-α的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.把函數(shù)y=sin(x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變)得到函數(shù)f(x)的圖象.
(Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0,$\frac{5π}{6}$]時(shí),關(guān)于x的方程f(x)-m=0有兩個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為4,則P到另一焦點(diǎn)距離為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,又$\overrightarrow{OC}=2\overrightarrow{a}+\overrightarrow$,$\overrightarrow{OD}=\overrightarrow{a}+3\overrightarrow$.求|$\overrightarrow{CD}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{x}{{e}^{x}}$(e是對(duì)自然對(duì)數(shù)的底數(shù)),則其導(dǎo)函數(shù)f'(x)=( 。
A.$\frac{1+x}{{e}^{x}}$B.$\frac{1-x}{{e}^{x}}$C.1+xD.1-x

查看答案和解析>>

同步練習(xí)冊(cè)答案