若函數(shù)y=f(x)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)y=f(x)的圖象可能是( ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列的前項和為,().
(1)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和;
(3)數(shù)列中是否存在三項,它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
命題“若f(x)是奇函數(shù),則f(-x)是奇函數(shù)”的否命題是( )
A.若f(x)是偶函數(shù),則f(-x)是偶函數(shù)
B.若f(x)不是奇函數(shù),則f(-x)不是奇函數(shù)
C.若f(-x)是奇函數(shù),則f(x)是奇函數(shù)
D.若f(-x)不是奇函數(shù),則f(x)不是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列命題錯誤的是( ).
A.命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0無實數(shù)根,則m≤0”
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.若p∧q為假命題,則p,q均為假命題
D.對于命題p:∃x0∈R,使得x20+x0+1<0,則綈p:∀x∈R,均有x2+x+1≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知命題P:函數(shù)y=loga(1-2x)在定義域上單調(diào)遞增;
命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立.
若P∨Q是真命題,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
根據(jù)統(tǒng)計,一名工人組裝第x件某產(chǎn)品所用的時間(單位:分鐘)為f(x)=(A,c為常數(shù)).已知工人組裝第4件產(chǎn)品用時30分鐘,組裝第A件產(chǎn)品用時15分鐘,那么c和A的值分別是( ).
A.75,25 B.75,16
C.60,25 D.60,16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知g(x)=-x2-3,f(x)是二次函數(shù),當(dāng)x∈[-1,2]時,f(x)的最小值為1,且f(x)+g(x)為奇函數(shù),求函數(shù)f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù),且a≠0),F(x)=.
(1)若f(-1)=0,曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸,求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-1,1]時,g(x)=kx-f(x)是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)為偶函數(shù),證明F(m)+F(n)>0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com