17.在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,已知A=60°,b=5,c=4.
(1)求a;
(2)求sinBsinC的值.

分析 (1)由題意和余弦定理列出式子,即可求出a的值;
(2)由條件和正弦定理求出sinB和sinC的值,代入式子求出答案.

解答 解:(1)因?yàn)锳=60°,b=5,c=4,
所以由余弦定理得,a2=b2+c2-2bccosA
=25+16-$2×5×4×\frac{1}{2}$=21,
則a=$\sqrt{21}$;
(2)由正弦定理得,$\frac{sinB}=\frac{c}{sinC}=\frac{a}{sinA}$=$\frac{\sqrt{21}}{\frac{\sqrt{3}}{2}}$=$2\sqrt{7}$,
所以sinB=$\frac{2\sqrt{7}}=\frac{5}{2\sqrt{7}}$=$\frac{5\sqrt{7}}{14}$,sinC=$\frac{4}{2\sqrt{7}}$=$\frac{2\sqrt{7}}{7}$
所以sinBsinC=$\frac{5\sqrt{7}}{14}$×$\frac{2\sqrt{7}}{7}$=$\frac{5}{7}$.

點(diǎn)評 本題考查正弦定理、余弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知定義域?yàn)椋?∞,+∞)的偶函數(shù)f(x)的一個單調(diào)遞增區(qū)間是(2,6),關(guān)于函數(shù)y=f(2-x)
①一個遞減區(qū)間是(4,8)
②一個遞增區(qū)間是(4,8)
③其圖象對稱軸方程為x=2      
④其圖象對稱軸方程為x=-2
其中正確的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知球O外接于正四面體ABCD,小球O'與球O內(nèi)切于點(diǎn)D,與平面ABC相切,球O的表面積為9π,則小球O'的體積為( 。
A.$\frac{4π}{3}$B.C.D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有四人在海邊沙灘上發(fā)現(xiàn)10顆精致的珍珠,四人約定分配方案:四人先抽簽排序①②③④,再由①號提出分配方案,四人表決,至少要有半數(shù)的贊成票才算通過,若通過就按此方案分配,否則提出方案的①號淘汰,不再參與分配,接下來由②號提出分配方案,三人表決…,依此類推.假設(shè):1.四人都守信用,愿賭服輸;2.提出分配方案的人一定會贊成自己的方案;3.四人都會最大限度爭取個人利益.易知若①②都淘汰,則③號的最佳分配方案(能通過且對提出方案者最有利)是(10,0)(表示③、④號分配珍珠數(shù)分別是10和0).問①號的最佳分配方案是( 。
A.(4,2,2,2)B.(9,0,1,0)C.(8,0,1,1)D.(7,0,1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間[-1,m]上隨機(jī)選取一個數(shù)x,若x≤1的概率為$\frac{2}{5}$,則實(shí)數(shù)m的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=log2x+x的零點(diǎn)所在的一個區(qū)間是( 。
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面命題判斷正確的是(  )
A.若p∨q是真命題,則p,q都是真命題
B.命題“?x0∈R,x02-1>0的否定是“?x∈R,x2-1<0”
C.過平面α外的一點(diǎn)P的直線與平面α所成的角為θ,則這樣的直線有無數(shù)條
D.△ABC中,“A>B”是“sinA>sinB”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.四名教師被分到甲、乙、丙三所學(xué)校參加工作,每所學(xué)校至少一名教師.
(Ⅰ)求A、B兩名教師被同時分配到甲學(xué)校的概率;
(Ⅱ)求A、B兩名教師不在同一學(xué)校的概率;
(Ⅲ)設(shè)隨機(jī)變量ξ為這四名教師中分配到甲學(xué)校的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在邊長為3的正方形ABCD中,點(diǎn)P,Q分別在邊CD、BC上,滿足DP=1,CQ=QB.則∠PAQ的大小是$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案