設(shè)(1-x)8=a0+a1x+…+a7x7+a8x8,則|a1|+…+|a7|+|a8|=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:由題意可得(1+x)8=|a0|+|a1|x+…+|a7|x7+|a8|x8,在此等式中,令x=1,可得|a0|+|a1|+…+|a7|+|a8|的值,又x=0時(shí),|a0|=1,可得|a1|+…+|a7|+|a8|=255.
解答: 解:由題意可得 (1+x)8=|a0|+|a1|x+…+|a7|x7+|a8|x8,
在此等式中,令x=1,可得|a0|+|a1|+…+|a7|+|a8|=28=256,
又x=0時(shí),|a0|=1,
所以|a1|+…+|a7|+|a8|=255,
故答案為:255.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的x賦值,求展開(kāi)式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l的參數(shù)方程為
x=1+
t
2
y=
3
2
t
,曲線C的極坐標(biāo)方程(1+sin2θ)ρ2=2.
(1)寫(xiě)出直線l的普通方程與曲線C直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于兩點(diǎn)A、B,若點(diǎn)P為(1,0),求
1
|AP|2
+
1
|BP|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A(1,1)到直線x-y+2=0的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(4,3)
(1)若過(guò)點(diǎn)P的直線l1在坐標(biāo)軸上的截距相等,求l1的方程;
(2)若過(guò)點(diǎn)P的直線l2與原點(diǎn)的距離為4,求l2的方程;
(3)若過(guò)點(diǎn)P的直線l3的直線交x軸正半軸于A點(diǎn),交y軸正半軸于B點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積最小時(shí),求l3的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(2ωx-
π
3
)(ω>0)與g(x)=cos(2x+φ)(|φ|<
π
2
)有相同的對(duì)稱中心.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)g(x)的圖象向右平移
π
6
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)h(x)的圖象,求函數(shù)h(x)在[-
π
3
,
π
3
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=3,S5=30,則a7+a8+a9=( 。
A、27B、36C、42D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知凼數(shù)f(x)=
x2+1
bx+c
是奇凼數(shù),且f(1)=2,
(1)求f(x)的解析式
(2)判斷凼數(shù)f(x)在(0,1)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)有10個(gè)點(diǎn),其中5個(gè)點(diǎn)在一條直線上,此外再?zèng)]有三點(diǎn)共線,則共可確定
 
個(gè)三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|y=lg(3-2x)},集合B={x|y=
1-x
},則A∩B=( 。
A、[1,
3
2
)
B、(-∞,1]
C、(-∞,
3
2
]
D、(
3
2
,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案