設(shè)x∈Z,集合A={x|x=2k-1,k∈Z},集合B={x|x=2k,k∈Z}.若命題p:?x∈A,2x∈B.則( 。
A、¬p:?x∈A,2x∉B
B、¬p:?x∉A,2x∉B
C、¬p:?x∉A,2x∈B
D、¬p:?x∈A,2x∉B
考點:命題的否定,特稱命題
專題:簡易邏輯
分析:直接利用命題的否定,寫出全稱命題的否定形式即可.
解答: 解:全稱命題的否定是特稱命題,
所以設(shè)x∈Z,集合A={x|x=2k-1,k∈Z},集合B={x|x=2k,k∈Z}.
若命題p:?x∈A,2x∈B.則¬p:?x∈A,2x∉B.
故選:D.
點評:本題考查命題的否定全稱命題與特稱命題的關(guān)系,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x+3)2+(y-1)2=4,若直線過點A(-2,0),且被圓C截得的弦長為2
3
,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(3-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a1+a2+a3+a4的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+ax+b=0有兩個根,其中一根在區(qū)間(0,1]內(nèi),另一根在區(qū)間[-1,0)內(nèi),則z=a2+(b+4)2的最小值是( 。
A、3B、9C、4D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)上一點M(1,m)(m>0)到其焦點的距離為3,則拋物線的焦點坐標(biāo)為( 。
A、(2,0)
B、(0,2)
C、(4,0)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R,命題“若a+b+c=3,則a2+b2+c2≥3”的否命題是(  )
A、若a+b+c≠3,則a2+b2+c2<3
B、若a+b+c=3,則a2+b2+c2<3
C、若a+b+c≠3,則a2+b2+c2≥3
D、若a+b+c=3,則a2+b2+c2≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知單位圓的圓心與坐標(biāo)原點重合,且與x軸正半軸交于點A,圓上一點P(-
3
2
1
2
),則劣弧
AP
的弧長為(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ex-1
x2-1
的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義max{a,b}=
a,a≥b
b,a<b
(a,b∈R),若實數(shù)x,y滿足
x+2y≤6
2x+y≤6
x≥0,y≥0
,則z=max{2x+3y-1,x+2y+2}的取值范圍是(  )
A、[2,5]
B、[2,9]
C、[5,9]
D、[-1,9]

查看答案和解析>>

同步練習(xí)冊答案