16.如圖,一個(gè)直三棱柱形容器中盛有水,且側(cè)棱AA1=8.若側(cè)面AA1B1B水平放置時(shí),液面恰好過(guò)AC,BC,A1C1,B1C1的中點(diǎn),當(dāng)?shù)酌鍭BC水平放置時(shí),液面高為(  )
A.7B.6C.4D.2

分析 利用幾何體的體積不變,體積相等,轉(zhuǎn)化求解即可.

解答 解:底面ABC的面積設(shè)為S,則側(cè)面AA1B1B水平放置時(shí),液面恰好過(guò)AC,BC,A1C1,B1C1的中點(diǎn),
水的體積為:$\frac{3}{4}S×8$,當(dāng)?shù)酌鍭BC水平放置時(shí),液面高為h,水的體積為:Sh=$\frac{3}{4}×8S$,
可得h=6.
故選:B.

點(diǎn)評(píng) 本題考查幾何體的體積的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.三棱錐的三組相對(duì)的棱(相對(duì)的棱是指三棱錐中成異面直線的一組棱)分別相等,且長(zhǎng)分別為2,m,n,其中m2+n2=12,則該三棱錐體積的最大值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)y=f(x)的圖象為如圖所示的折線ABC,則$\int_{-1}^1{[xf(x)]}dx$=( 。
A.$-\frac{1}{3}$B.$-\frac{1}{6}$C.0D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題p:“雙曲線$\frac{y^2}{3}-\frac{x^2}{m}=1$的離心率$e∈({\sqrt{2},+∞})$”,命題q:“$\frac{{2{x^2}}}{m}+\frac{y^2}{m-2}=1$是焦點(diǎn)在x軸上的橢圓方程”.若命題“p∧q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直線$\sqrt{3}x+y-2=0$的傾斜角為(  )
A.30oB.150oC.60oD.120o

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知球O有個(gè)內(nèi)接正方體,且球O的表面積為36π,則正方體的邊長(zhǎng)為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知平面內(nèi)一動(dòng)點(diǎn)M到點(diǎn)F(1,0)距離比到直線x=-3的距離小2.設(shè)動(dòng)點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)若過(guò)點(diǎn)F的直線l與曲線C交于A、B兩點(diǎn),過(guò)點(diǎn)B作直線:x=-1的垂線,垂足為D,設(shè)A(x1,y1),B(x2,y2).
求證:①x1•x2=1,y1•y2=-4;      ②A、O、D三點(diǎn)共線 (O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.是否存在實(shí)數(shù) a,使函數(shù)f(x)=cos2x+2asinx+3a-1在閉區(qū)間上的最大值為 4,若存在,則求出對(duì)應(yīng)的 a 值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若f(x)=5cosx,則f′($\frac{π}{2}$)=-5.

查看答案和解析>>

同步練習(xí)冊(cè)答案