5.如圖,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左焦點、左頂點分別為F,C,過原點O的直線與兩分支分別交于A,B(異于C點),若直線AF交BC于D點,且$\overrightarrow{AD}$=2$\overrightarrow{DF}$,則雙曲線的離心率為(  )
A.2B.3C.4D.$\frac{3}{2}$

分析 設(shè)A(m,n),B(-m,-n),由題意可得F(-c,0),C(-a,0),運用向量共線的坐標(biāo)表示和三點共線的條件:斜率相等,計算結(jié)合離心率公式即可得到所求值.

解答 解:設(shè)A(m,n),B(-m,-n),
由題意可得F(-c,0),C(-a,0),
由$\overrightarrow{AD}$=2$\overrightarrow{DF}$,可得
xD=$\frac{m-2c}{1+2}$=$\frac{m-2c}{3}$,yD=$\frac{n}{1+2}$=$\frac{n}{3}$,
即有D($\frac{m-2c}{3}$,$\frac{n}{3}$),
由B,C,D共線,可得
kBC=kCD,即為$\frac{n}{m-a}$=$\frac{n}{m-2c+3a}$,
即有m-a=m-2c+3a,
即為c=2a,e=$\frac{c}{a}$=2.
故選:A.

點評 本題考查雙曲線的離心率的求法,考查向量共線的坐標(biāo)表示,以及三點共線的條件:斜率相等,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓C的方程為x2+y2+8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的取值范圍為$-\frac{4}{3}≤k≤0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC中,邊a,b,c的對角分別為A,B,C,且$a=\sqrt{6}$,$c=\sqrt{2}$,$A=\frac{2π}{3}$.
(Ⅰ)求B,C及△ABC的面積;
(Ⅱ)已知函數(shù)f(x)=sinBsin2πx+cosCcos2πx,把函數(shù)y=f(x)的圖象向右平移$\frac{1}{4}$個單位,然后把所得函數(shù)圖象上點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,即得函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在[0,2]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}是等差數(shù)列,an+1>an,a1•a10=160,a3+a8=37.
(1)求數(shù)列{an}的通項公式;
(2)若從數(shù)列{an}中依次取出第2項,第4項,第8項,第2n項,按原來的順序組成一個新數(shù)列{bn},求Sn=b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)an=n•2n(n∈N*),求數(shù)列{an}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x,y>0,4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,則4x+y的最大值與最小值之差為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{^{2}}=1$(b>0)的右焦點F2為圓心,2為半徑的圓與雙曲線的漸近線相交,則雙曲線的離心率的范圍是( 。
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,在△ABC所在平面外有一點P,M、N分別是PC和AC上的點,過MN作平面平行于BC,畫出這個平面與其他各面的交線,并說明畫法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,已知角A、B、C所對的邊分別為a,b,c.已知A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2.則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊答案