20.設(shè)計一個算法,找出閉區(qū)間[20,25]上所有能被3整除的整數(shù).

分析 可通過循環(huán)結(jié)構(gòu)的算法實現(xiàn)求閉區(qū)間[20,25]上所有能被3整除的整數(shù).

解答 解:算法如下:
         第一步,令a=20.
     第二步,判斷“3整除a”是否成立.若是,則輸出a;否則,下一步
     第三步,使a的值增加l,仍用a表示.
     第四步,判斷“a>25”是否成立.若是,則結(jié)束算法;否則,返回第二步.
框圖如下所示:

點評 本題主要考查了設(shè)計程序算法解決實際問題,屬于常規(guī)題型,是考查循環(huán)結(jié)構(gòu)時常用的范例,很典型,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.高中數(shù)學(xué)聯(lián)賽期間,某賓館隨機安排A、B、C、D、E五名男生入住3個標(biāo)間(每個標(biāo)間至多住2人),則A、B入住同一標(biāo)間的概率為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,已知定點F1(0,-$\sqrt{3}$),F(xiàn)2(0,$\sqrt{3}$),動點P滿足|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=2,設(shè)點P的曲線為C,直線l:y=kx+m與C交于A、B兩點:
(1)寫出曲線C的方程,并求出曲線C的軌跡;
(2)當(dāng)m=1,求實數(shù)k的取值范圍;
(2)證明:存在直線l,滿足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{AB}$|,并求出實數(shù)k、m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F(xiàn)1,F(xiàn)2是左右焦點,A,B是長軸兩端點,點P(a,b)與F1,F(xiàn)2圍成等腰三角形,且${S_{△P{F_1}{F_2}}}$=$\sqrt{3}$.
(I)求橢圓C的方程;
(Ⅱ)設(shè)點Q是橢圓上異于A,B的動點,直線QA、QB分別交直線l:x=m(m<-2)于M,N兩點.
(i)當(dāng)$\overrightarrow{Q{F_1}}$=λ$\overrightarrow{MN}$時,求Q點坐標(biāo);
(ii)是否存在實數(shù)m,使得以MN為直徑的圓經(jīng)過點F1?若存在,求出實數(shù)m的值,若不存在.請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在R上的偶函數(shù)y=f(x)滿足f(x+4)=f(x),當(dāng)x∈[4,5]時,f(x)=x+1,則f(103)=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a=∫${\;}_{0}^{π}$sinxdx,若從[0,10]中任取一個數(shù)x,則使|x-1|≤a的概率為( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某空間幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.16+2πB.16+πC.8+2πD.8+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-5≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y+1的最大值為( 。
A.9B.10C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)公差不為0的等差數(shù)列{an}的前n項和為Sn.若S3=a22,且S1,S2,S4成等比數(shù)列,則an=2n-1 Sn=n2

查看答案和解析>>

同步練習(xí)冊答案