精英家教網 > 高中數學 > 題目詳情
若方程表示焦點在y軸上的橢圓,則m的取值范圍為         

因為方程表示焦點在軸上的橢圓,所以,解得
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題


(本題滿分14分)已知直角坐標平面內點到點與點的距離之和為
(Ⅰ)試求點的軌跡的方程;
(Ⅱ)若斜率為的直線與軌跡交于兩點,點為軌跡上一點,記直線的斜率為,直線的斜率為,試問:是否為定值?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換可把平面直角坐標系上的點變換到這一平面上的點.特別地,若曲線上一點經變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.
(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程. 并求出當時,其兩個焦點經變換公式變換后得到的點的坐標;
(2)當時,求(1)中的橢圓在變換下的所有不動點的坐標;
(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換
,)下的不動點的存在情況和個數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的上頂點為,左右焦點分別為,直線與圓相切,若橢圓上點使得成等比數列

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,離心率為,過點與橢圓交于兩點.
(1)若直線的斜率為1,且,求橢圓的標準方程;
(2)若(1)中橢圓的右頂點為,直線的傾斜角為,問為何值時,取得最大值,并求出這個最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點,B為橢圓+=1的左準線與軸的交點,若線段AB的中點C在橢圓上,則該橢圓的離心率為       
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知橢圓C,經過橢圓C的右焦點F且斜率為kk≠0)的直線l交橢圓G于A、B兩點,M為線段AB的中點,設O為橢圓的中心,射線OM交橢圓于N點.

(1)是否存在k,使對任意m>0,總有成立?若存在,求出所有k的值;
(2)若,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知動點P(x,y)在橢圓上,若F(3,0),,且M為PF中點,則=_____.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓的左、右焦點分別為,若橢圓上存在一點使,則該橢圓的離心率的取值范圍為          

查看答案和解析>>

同步練習冊答案