已知函數(shù)是定義在上的奇函數(shù),當時, (其中e是自然界對數(shù)的底,)
(1)設(shè),求證:當時,;
(2)是否存在實數(shù)a,使得當時,的最小值是3 ?如果存在,求出實
數(shù)a的值;如果不存在,請說明理
(Ⅰ)略    (Ⅱ)存在實數(shù),使得當時,有最小值3
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用。
(1)中根據(jù)函數(shù)的奇函數(shù)的性質(zhì)得到分段函數(shù)的解析式,然后當a=-1時,得到解析式,運用導(dǎo)數(shù)的思想來分析單調(diào)性得到最小值的問題。
(2)根據(jù)已知中假設(shè)存在最值,利用導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系對于參數(shù)a分類討論得到結(jié)論
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)圖象上一點
的切線方程為y= -3x+2ln2+2.
(1)求a,b的值;
(2)若方程內(nèi)有兩個不等實根,求m的取值范圍(其
為自然對數(shù)的底數(shù));

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點處的切線為l,則l上的點到上的
點的最近距離是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時,可以利用對數(shù):在函數(shù)解析式兩邊求對數(shù)得,兩邊對求導(dǎo)數(shù),得于是,運用此方法可以求得函數(shù)在(1,1)處的切線方程是 ­­­­­­_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間上的最小值為(   )
A.72B.0C.12D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,要建一間體積為,墻高為的長方體形的簡易倉庫. 已知倉庫屋頂每平方米的造價為500元,墻壁每平方米的造價為400元,地面造價忽略不計. 問怎樣設(shè)計倉庫地面的長與寬,能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點在曲線上,為曲線在點處的切線的傾斜角,則的取值范圍是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本小題滿分12分)
已知函數(shù),曲線在點()處的
切線方程是
(Ⅰ)求的值;
(Ⅱ)設(shè)若當時,恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點處的切線方程是        

查看答案和解析>>

同步練習(xí)冊答案