2.在△ABC中,角A、B、C的對邊分別為a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=2$\sqrt{2}$,求a+c的值.

分析 (1)由條件得sin(B+C)=3sinAcosB,再由sin(B+C)=sinA≠0,可得 cosB=$\frac{1}{3}$.
(2)由兩個向量的數(shù)量積的定義得到ac=6,再由余弦定理可得a2+c2=12,解方程組可求得a和c的值.

解答 解:(1)由sinCcosB+sinBcosC=3sinAcosB,得sin(B+C)=3sinAcosB,
因為A、B、C是△ABC的三內(nèi)角,所以sin(B+C)=sinA≠0,
因此cosB=$\frac{1}{3}$.
(2)$\overrightarrow{BA}$•$\overrightarrow{BC}$=|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|cosB=$\frac{1}{3}$ac=2,即ac=6,
由余弦定理得b2=a2+c2-2accosB,所以a2+c2=12,
解方程組$\left\{\begin{array}{l}{ac=6}\\{{a}^{2}+{c}^{2}=12}\end{array}\right.$,
得 a=c=$\sqrt{6}$.
所以a+c=2$\sqrt{6}$.

點評 本題考查兩角和的正弦公式,余弦定理的應(yīng)用,以及兩個向量的數(shù)量積的定義.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域為        ( 。
A.[-2,7]B.[2,7]C.[-2,14]D.[2,14]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在銳角△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、,若C=45°,b=4$\sqrt{5}$,sinB=$\frac{2\sqrt{5}}{5}$.
(1)求c的值;
(2)求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某公司過去五個月的廣告費支出x與銷售額y(單位:萬元)之間有下列對應(yīng)數(shù)據(jù):
x24568
y40605070
工作人員不慎將表格中y的第一個數(shù)據(jù)丟失.已知y對x呈線性相關(guān)關(guān)系,且回歸方程為$\widehaty$=6.5x+17.5,則下列說法:
①銷售額y與廣告費支出x正相關(guān);
②丟失的數(shù)據(jù)(表中處)為30;
③該公司廣告費支出每增加1萬元,銷售額一定增加6.5萬元;
④若該公司下月廣告投入8萬元,則銷售額為70萬元.
其中,正確說法有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知數(shù)列{an}中,a1=1,an=an-1+3(n≥2,n∈N*),數(shù)列{bn}滿足bn=$\frac{1}{a_na_{n+1}}$,n∈N*,則$\underset{lim}{n→∞}$(b1+b2+…+bn)$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知不同的三點A,B,C在一條直線上,且$\overrightarrow{OB}$=a5$\overrightarrow{OA}$+a2012$\overrightarrow{OC}$,則等差數(shù)列{an}的前2016項的和等于1008.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知定點A(0,-5),P是圓(x-2)2+(y+3)2=2上的動點,則當|PA|取到最大值時,P點的坐標為(3,-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.三棱柱ABC-A1B1C1的側(cè)面AA1C1C為正方形,側(cè)面AA1B1B⊥側(cè)面BB1C1C,且AC=2,AB=$\sqrt{2}$,∠A1AB=45°,E、F分別為AA1、CC1的中點.
(1)求證:AA1⊥平面BEF;
(2)求二面角B-EB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$,若存在實數(shù)a,b,c,d,滿足f(a)=f(b)=f(c)=f(d),其中0<a<b<c<d,則abcd的取值范圍是( 。
A.(8,24)B.(10,18)C.(12,18)D.(12,15)

查看答案和解析>>

同步練習冊答案