【題目】數(shù)列中,已知,,,設(shè)的前項和

(1)求證:數(shù)列是等差數(shù)列;

(2);

(3)是否存在正整數(shù),,使成等差數(shù)列?若存在,求出,的值;若不存在,說明理由.

【答案】(1)詳見解析(2)(3),,的值為,,

【解析】

試題分析:(1)證明數(shù)列為等差數(shù)列,一般方法為定義法,即利用相鄰兩項的差為常數(shù)進行論證:(2)先確定的通項公式:,再求,最后利用錯位相減法求和,注意相減時項的符號變化、項數(shù)的確定、最后結(jié)果得表示(3)存在性問題,一般以算代探:先根據(jù)成等差數(shù)列得,代入得,通過研究單調(diào)性,確定滿足條件解的范圍:當,因此滿足條件的解,經(jīng)驗證滿足條件

試題解析:(1)證明:因為,所以,…………………2

又因為,所以

所以是首項為1,公差為的等差數(shù)列. …………………………4

(2)由(1)知,所以,………6

所以

所以,

兩式相減得

,

所以…………………………………………………………………10

(3)假設(shè)存在正整數(shù),,使成等差數(shù)列,

,即

由于當時,,所以數(shù)列單調(diào)遞減.

,所以至少為2,所以, ………………12分

時,,又

所以,等式不成立.………………………………………14分

②當時,

所以,所以,所以(單調(diào)遞減,解唯一確定).

綜上可知,,的值為, ………………………………16分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知分別為橢圓左、右焦點,點在橢圓上,且軸,的周長為6.

(1)求橢圓的標準方程;

(2)是橢圓上異于點的兩個動點,如果直線與直線的傾斜角互補,證明:直線的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若為曲線的一條切線,求a的值;

(2)已知,若存在唯一的整數(shù),使得,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在四棱錐中,底面是正方形,

1)如圖2,設(shè)點的中點,點的中點,求證: 平面

2)已知網(wǎng)格紙上小正方形的邊長為,請你在網(wǎng)格紙上用粗線畫圖1中四棱錐的府視圖(不需要標字母),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三文科名學生參加了月份的模擬考試,學校為了了解高三文科學生的數(shù)學、語文情況,利用隨機數(shù)表法從中抽取名學生的成績進行統(tǒng)計分析,抽出的名學生的數(shù)學、語文成績?nèi)缦卤?

(1)將學生編號為:, 若從第行第列的數(shù)開始右讀,請你依次寫出最先抽出的 個人的編號(下面是摘自隨機用表的第四行至第七行)

(2)若數(shù)學優(yōu)秀率為,求的值;

(3)在語文成績?yōu)榱嫉膶W生中,已知,求數(shù)學成績優(yōu)的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱中,已知,分別為,的中點,點上,且求證:

(1)直線平面;

(2)直線平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門對某食品廠生產(chǎn)甲、乙兩種食品進行了檢測調(diào)研,檢測某種有害微量元素的含量,隨機在兩種食品中各抽取了10個批次的食品,每個批次各隨機地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).

規(guī)定:當食品中的有害微量元素的含量在時為一等品,在為二等品,20以上為劣質(zhì)品.

1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個數(shù)據(jù),再分別從這5個數(shù)據(jù)中各選取2個,求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;

2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設(shè)這兩件食品給該廠帶來的盈利為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,橢圓的離心率為是橢圓的右焦點,直線的斜率為,為坐標原點

(1)求的方程;

(2)設(shè)過點的動直線相交于,兩點,的面積最大時,的直線方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】重慶八中大學城校區(qū)與本部校區(qū)之間的駕車單程所需時間為只與道路暢通狀況有關(guān),對其容量為500的樣本進行統(tǒng)計,結(jié)果如下:

(分鐘)

25

30

35

40

頻數(shù)(次)

100

150

200

50

以這500次駕車單程所需時間的頻率代替某人1次駕車單程所需時間的概率.

(1)求的分布列與;

(2)某天有3位教師獨自駕車從大學城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時間少于的人數(shù),求的分布列與;

(3)下周某天老師將駕車從大學城校區(qū)出發(fā),前往本部校區(qū)做一個50分鐘的講座,結(jié)束后立即返回大學城校區(qū),求老師從離開大學城校區(qū)到返回大學城校區(qū)共用時間不超過120分鐘的概率.

查看答案和解析>>

同步練習冊答案