已知等差數(shù)列{an}滿足a3=5,a4-2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Sn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)等差數(shù)列{an}的公差為d,由a3=5,a4-2a2=3列出關(guān)于首項(xiàng)與公差的方程組,可求得
a1=1
d=2
,從而可得數(shù)列{an}的通項(xiàng)公式;
而{bn}是以b1=3且公比q=3的等比數(shù)列,從而可求得數(shù)列{bn}的通項(xiàng)公式;
(2)由(1)得cn=an+bn=(2n-1)+3n,利用分組求和法即可求得數(shù)列{cn}的前n項(xiàng)和Sn
解答: 解:(1)設(shè)等差數(shù)列{an}的公差為d,則由題意得
a1+2d=5
(a1+4d)-2(a1+d)=3
,解得
a1=1
d=2
,所以,an=1+2(n-1)=2n-1,
因?yàn)閧bn}是以b1=3且公比q=3的等比數(shù)列,
所以bn=3n;
(2)由(1)得cn=an+bn=(2n-1)+3n,
則Sn=1+3+5+…+(2n-1)+(3+32+33+…+3n)=
n(1+2n-1)
2
+
3(1-3n)
1-3
=n2+
3n+1-3
2
點(diǎn)評(píng):本題考查數(shù)列的求和,著重考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式的應(yīng)用,突出考查分組求和,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖是為求S=1+
1
2
+
1
3
+…+
1
10
的值而設(shè)計(jì),其中①處應(yīng)填
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=
1
n(n+1)
(n∈N*),則它的前10項(xiàng)和S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)f(x)滿足下面三個(gè)條件:
①對(duì)任意正數(shù)a,b,都有f(a)+f(b)=f(ab);
②當(dāng)x>1時(shí),f(x)<0;
③f(2)=-1
(Ⅰ)求f(1)和f(
1
4
)
的值;
(Ⅱ)試用單調(diào)性定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(Ⅲ)求滿足f(4x3-12x2)+2>f(18x)的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足xf′(x)+f(x)>0,當(dāng)0<a<b<1時(shí),下面選項(xiàng)中最大的一項(xiàng)是( 。
A、abf(ab
B、baf(ba
C、logab•f(logab)
D、logba•f(logba)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意的實(shí)數(shù)x恒有l(wèi)oga(sinx+cosx)2≥-2,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線 L1:y=x+1與橢圓 
x2
4
+
y2
3
=1相交于A、B兩點(diǎn),試求弦AB的中點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-9x(a≠0),當(dāng)x=-1時(shí)f(x)取得極值5.
(Ⅰ)求f(x)的極小值;
(Ⅱ)對(duì)任意x1,x2∈(-3,3),判斷不等式|f(x1)-f(x2)|<32是否能恒成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-kx-1,
(1)若k=2,試用定義法證明f(x)在區(qū)間[1,+∞)上為增函數(shù);
(2)求f(x)在區(qū)間[1,4]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案