11.已知點(diǎn)F1,F(xiàn)2分別是雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右兩焦點(diǎn),過點(diǎn)F1的直線l與雙曲線的左右兩支分別交于P,Q兩點(diǎn),若△PQF2是以∠PQF2為頂角的等腰三角形,其中$∠PQ{F_2}∈[\frac{π}{3},π)$,則雙曲線離心率e
的取值范圍為( 。
A.$[\sqrt{7},3)$B.$[1,\sqrt{7})$C.$[\sqrt{5},3)$D.$[\sqrt{5},\sqrt{7})$

分析 由題意設(shè)θ=$∠PQ{F_2}∈[\frac{π}{3},π)$,可得∠F1PF2=$\frac{π+θ}{2}$,設(shè)|QP|=|QF2|=x,則由雙曲線的定義可得|PF1|=2a,即有|PF2|=4a,在△PF1F2中,運(yùn)用余弦定理和誘導(dǎo)公式,以及離心率公式,解不等式即可得到e的范圍.

解答 解:△PQF2是以∠PQF2為頂角的等腰三角形,
其中設(shè)θ=$∠PQ{F_2}∈[\frac{π}{3},π)$,
可得∠F1PF2=$\frac{π+θ}{2}$,
設(shè)|QP|=|QF2|=x,
則由雙曲線的定義可得|QF1|-|QF2|=2a,即|PF1|=2a,
即有|PF2|=4a,
在△PF1F2中,由余弦定理可得,cos∠F1PF2=$\frac{4{a}^{2}+16{a}^{2}-4{c}^{2}}{2•2a•4a}$
=$\frac{5}{4}$-$\frac{1}{4}$e2=-sin$\frac{θ}{2}$∈(-1,-$\frac{1}{2}$],
解得$\sqrt{7}$≤e<3.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的定義、方程和性質(zhì),考查余弦定理和誘導(dǎo)公式的運(yùn)用,以及正弦函數(shù)的圖象和性質(zhì),考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等比數(shù)列{an}中各項(xiàng)均為正數(shù),Sn是其前n項(xiàng)和,且滿足2S3=8a1+3a2,a4=16,則S4=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{OA}=(3,1)$,$\overrightarrow{OB}=(-1,3)$,$\overrightarrow{OC}=m\overrightarrow{OA}-n\overrightarrow{OB}$(m>0,n>0),若m+n∈[1,2],則$|\overrightarrow{OC}|$的取值范圍是( 。
A.$[\sqrt{5},2\sqrt{5}]$B.$[\sqrt{5},2\sqrt{10})$C.$(\sqrt{5},\sqrt{10})$D.$[\sqrt{5},2\sqrt{10}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象如圖所示,其中A(-$\frac{5π}{12}$,0),B($\frac{π}{12}$,0),則函數(shù)f(x)的單調(diào)增區(qū)間為( 。
A.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)B.[$\frac{π}{3}$+kπ,$\frac{5π}{6}$+kπ](k∈Z)
C.[-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z)D.[$\frac{π}{3}$+2kπ,$\frac{5π}{6}$+2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.每年的4月23日為世界讀書日,為調(diào)查某高校學(xué)生(學(xué)生很多)的讀書情況,隨機(jī)抽取了男生,女生各20人組成的一個(gè)樣本,對(duì)他們的年閱讀量(單位:本)進(jìn)行了統(tǒng)計(jì),分析得到了男生年閱讀量的頻率分布表和女生閱讀量的頻率分布直方圖.
男生年閱讀量的頻率分布表(年閱讀量均在區(qū)間[0,60]內(nèi)):
本/年[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
頻數(shù)318422
(Ⅰ)根據(jù)女生的頻率分布直方圖估計(jì)該校女生年閱讀量的中位數(shù);
(Ⅱ)在樣本中,利用分層抽樣的方法,從男生年與度量在[20,30),[30,40)的兩組里抽取6人,再從這6人中隨機(jī)抽取2人,求[30,40)這一組中至少有1人被抽中的概率;
(Ⅲ)若年閱讀量不小于40本為閱讀豐富,否則為閱讀不豐富,依據(jù)上述樣本研究閱讀豐富與性別的關(guān)系,完成下列2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為月底豐富與性別有關(guān).
性別    閱讀量豐富不豐富合計(jì)
   
   
合計(jì)   
P(K2≥k00.0250.0100.005
k05.0246.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如甲圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點(diǎn),將△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙圖所示的四棱錐D1-ABCE.
(Ⅰ)求證:BE⊥平面D1AE;
(Ⅱ)求二面角A-D1E-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},則集合A∩B=(  )
A.{8,10}B.{8,12}C.{8,14}D.{8,10,14}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足2$\overrightarrow{a}$+$\overrightarrow$=0,$\overrightarrow{a}$•$\overrightarrow$=-2,則(3$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,P是AB的中點(diǎn),則$\overrightarrow{DP}•\overrightarrow{AB}$=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案