【題目】已知數(shù)列{an}是等比數(shù)列,首項a1=1,公比q0,其前n項和為Sn,且S1+a1S3+a3,S2+a2成等差數(shù)列.

)求數(shù)列{an}的通項公式;

)若數(shù)列{bn}滿足,Tn為數(shù)列{bn}的前n項和,若Tn≥m恒成立,求m的最大值.

【答案】;(

【解析】試題分析:()因為, , 成等差數(shù)列,所以,所以,因為數(shù)列是等比數(shù)列,所以,又,所以,所以數(shù)列的通項公式

)因為恒成立,所以只需即可,由()知,又,所以,利用錯位相減法即可求得數(shù)列的前項和,通過的正負確定的單調(diào)性,進而求得的最小值,即可求得的最大值.

試題解析:()因為, 成等差數(shù)列,

所以,

所以,

所以,

因為數(shù)列是等比數(shù)列,

所以,

,所以,

所以數(shù)列的通項公式

)因為恒成立,所以只需即可,

由()知,又,

所以,

所以

所以

所以

所以

所以是遞增數(shù)列

所以

所以

所以的最大值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù)y=f(x)的圖象按向量 平移后得到函數(shù) 的圖象,則函數(shù)y=f(x)單調(diào)遞增區(qū)間是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={x|x2﹣3x≤10},N={x|a﹣1≤x≤2a+1}.
(1)若a=2,求(RM)∪N;
(2)若M∪N=M,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga ,(a>0且a≠1).記F(x)=2f(x)+g(x).
(1)求函數(shù)F(x)的零點;
(2)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查觀眾對某電視劇的喜愛程度,某電視臺在甲乙兩地隨機抽取了8名觀眾做問卷調(diào)查,得分結(jié)果如圖所示:

(1)計算甲地被抽取的觀眾問卷得分的中位數(shù)和乙地被抽取的觀眾問卷得分的平均數(shù);

(2)若從乙地被抽取的8名觀眾中邀請2人參加調(diào)研,求參加調(diào)研的觀眾中恰有1人的問卷調(diào)查成績在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過雙曲線x2 =1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且當0≤x1<x2≤1時,f(x1)≤f(x2),則f( )+f( )等于(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當t為何值時,數(shù)列{an}為等比數(shù)列?
(2)在(1)的條件下,若等差數(shù)列{bn}的前n項和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C:y2=4x,過焦點F斜率大于零的直線l交拋物線于A、B兩點,且與其準線交于點D.
(Ⅰ)若線段AB的長為5,求直線l的方程;
(Ⅱ)在C上是否存在點M,使得對任意直線l,直線MA,MD,MB的斜率始終成等差數(shù)列,若存在求點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案