【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側, =2(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是(
A.2
B.3
C.
D.

【答案】B
【解析】解:設直線AB的方程為:x=ty+m,點A(x1 , y1),B(x2 , y2),
直線AB與x軸的交點為M(m,0),
y2﹣ty﹣m=0,根據(jù)韋達定理有y1y2=﹣m,
=2,∴x1x2+y1y2=2,
結合 ,得 ,
∵點A,B位于x軸的兩側,∴y1y2=﹣2,故m=2.
不妨令點A在x軸上方,則y1>0,又
∴SABO+SAFO= = ×2×(y1﹣y2)+ × y1 ,
=
當且僅當 ,即 時,取“=”號,
∴△ABO與△AFO面積之和的最小值是3,故選B.

可先設直線方程和點的坐標,聯(lián)立直線與拋物線的方程得到一個一元二次方程,再利用韋達定理及 =2消元,最后將面積之和表示出來,探求最值問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且.直線軸、軸分別交于,兩點.設直線,的斜率分別為,,證明存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= (x>0),數(shù)列{an}滿足 (n∈N* , 且n≥2).
(1)求數(shù)列{an}的通項公式;
(2)設Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n1anan+1 , 若Tn≥tn2對n∈N*恒成立,求實數(shù)t的取值范圍;
(3)是否存在以a1為首項,公比為q(0<q<5,q∈N*)的數(shù)列{a },k∈N* , 使得數(shù)列{a }中每一項都是數(shù)列{an}中不同的項,若存在,求出所有滿足條件的數(shù)列{nk}的通項公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知sin2C= cosC,其中C為銳角.
(1)求角C的大小;
(2)a=1,b=4,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有10名員工,他們某年的收入如下表:

員工編號

1

2

3

4

5

6

7

8

9

10

年薪(萬元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

(1)求該單位員工當年年薪的平均值和中位數(shù);

(2)從該單位中任取2人,此2人中年薪收入高于7萬的人數(shù)記為,求的分布列和期望;

(3)已知員工年薪收入與工作年限成正相關關系,某員工工作第一年至第四年的年薪分別為4萬元,5.5萬元,6萬元,8.5萬元,預測該員工第五年的年薪為多少?

附:線性回歸方程中系數(shù)計算公式分別為:

,其中為樣本均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)上年度電價為0.8元/kWh,年用電量為akWh,本年度計劃將電價降到0.55 元/kWh至0.75元/kWh之間,而用戶期待電價為0.4元/kWh,下調電價后新增加的用電量與實際電價和用戶期望電價的差成反比(比例系數(shù)為K),該地區(qū)的電力成本為0.3元/kWh.(注:收益=實際用電量×(實際電價﹣成本價)),示例:若實際電價為0.6元/kWh,則下調電價后新增加的用電量為 元/kWh)
(1)寫出本年度電價下調后,電力部門的收益y與實際電價x的函數(shù)關系;
(2)設K=0.2a,當電價最低為多少仍可保證電力部門的收益比上一年至少增長20%?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:x∈R,ax2+ax﹣1<0,命題q: +1<0.
(1)若“p或q”為假命題,求實數(shù)a的取值范圍;
(2)若“非q”是“α∈[m,m+1]”的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知線段AB在平面α內,線段AC⊥α,線段BD⊥AB,線段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,則CD的長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式ax2+bx+c>0的解集是(1,2),則不等式cx2+bx+a>0的解集是

查看答案和解析>>

同步練習冊答案