已知圓的方程為,定直線的方程為.動(dòng)圓與圓外切,且與直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點(diǎn), 過點(diǎn)作直線的垂線恰好經(jīng)過點(diǎn),并交軌跡于異于點(diǎn)的點(diǎn),求直線的方程及的長.
(1);(2)直線PQ的方程:x+y-6=0,|PQ|=

試題分析:(1)設(shè)圓心C的坐標(biāo)為(x,y),根據(jù)題意可以得到關(guān)于x,y的方程組,消去參數(shù)以后即可得到x,y所滿足的關(guān)系式,即圓心C的軌跡M的方程;(2)設(shè)點(diǎn)P的坐標(biāo)為,根據(jù)題意可以把l’用含x0的代數(shù)式表示出來,由經(jīng)過點(diǎn)A(0,6)可以求得點(diǎn)P的坐標(biāo)與l’的方程,再聯(lián)立(1)中M的軌跡方程,即可求出Q的坐標(biāo),從而得到|PQ|d的長.
(1)設(shè)動(dòng)圓圓心C的坐標(biāo)為(x,y),動(dòng)圓半徑為R,則 ,且
|y+1|="R"       2分,可得
由于圓C1在直線l的上方,所以動(dòng)圓C的圓心C應(yīng)該在直線l的上方,所以有y+1>0,從而得,整理得,即為動(dòng)圓圓心C的軌跡M的方程.      5分
(2)如圖示,設(shè)點(diǎn)P的坐標(biāo)為,則切線的斜率為,可得直線PQ的斜率為,所以直線PQ的方程為.由于該直線經(jīng)過點(diǎn)A(0,6),所以有,得.因?yàn)辄c(diǎn)P在第一象限,所以,點(diǎn)P坐標(biāo)為(4,2),直線PQ的方程為x+y-6=0.——9分
把直線PQ的方程與軌跡M的方程聯(lián)立得,解得x=-12或4
        12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知拋物線,過點(diǎn)任作一直線與相交于兩點(diǎn),過點(diǎn)軸的平行線與直線相交于點(diǎn)為坐標(biāo)原點(diǎn)).

(1)證明:動(dòng)點(diǎn)在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點(diǎn),與(1)中的定直線相交于點(diǎn),證明:為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的方程為,過原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,如此下去,一般地,過點(diǎn)作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn)).
(1)指出,并求的關(guān)系式();
(2)求)的通項(xiàng)公式,并指出點(diǎn)列,,,向哪一點(diǎn)無限接近?說明理由;
(3)令,數(shù)列的前項(xiàng)和為,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A,求實(shí)數(shù)b的值,及點(diǎn)A的坐標(biāo).
(2)在拋物線y=4x2上求一點(diǎn),使這點(diǎn)到直線y=4x-5的距離最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)雙曲線的兩個(gè)焦點(diǎn)為,,一個(gè)頂點(diǎn)式,則的方程為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線L:與橢圓E: 相交于A,B兩點(diǎn),該橢圓上存在點(diǎn)P,使得
△ PAB的面積等于3,則這樣的點(diǎn)P共有(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓的方程為右焦點(diǎn)為,方程的兩實(shí)根分別為,則(   )
A.必在圓內(nèi)
B.必在圓
C.必在圓
D.必在圓與圓形成的圓環(huán)之間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓的圓心在坐標(biāo)原點(diǎn),且恰好與直線相切,設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),軸于點(diǎn),且動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點(diǎn),求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2014·黃岡模擬)如圖,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B為焦點(diǎn),且過點(diǎn)D的雙曲線的離心率為e1;以C,D為焦點(diǎn),且過點(diǎn)A的橢圓的離心率為e2,則e1+e2的取值范圍為(  )
A.[2,+∞)B.(,+∞)
C.D.(+1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案