已知圓
的圓心在坐標(biāo)原點
,且恰好與直線
相切,設(shè)點A為圓上一動點,
軸于點
,且動點
滿足
,設(shè)動點
的軌跡為曲線
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
(1)
;(2)
試題分析:(1)此題考察軌跡方程,考察代入法的習(xí)題,根據(jù)圓心到直線的距離等于半徑,可以求出圓的半徑,即知道圓
的方程
,設(shè)動點
,
,
,利用公式
,寫出向量相等的坐標(biāo)表示,利用
,代入,得到關(guān)于
的方程;
(2)利用直線方程與橢圓方程聯(lián)立,
和點到直線的距離公式,得出面積,并求出最大值.
(1)設(shè)動點
,
因為
軸于
,所以
,
設(shè)圓
的方程為
,由題意得
, 所以圓
的程為
.
由題意,
,所以
,
所以
即
將
代入圓
,得動點
的軌跡方程
(2)由題意可設(shè)直線
,設(shè)直線
與橢圓
交于
,
聯(lián)立方程
得
,
,解得
,
,
又因為點
到直線
的距離
,
.(當(dāng)且僅當(dāng)
即
時取到最大值)
面積的最大值為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左右焦點分別為
、
,短軸兩個端點為
、
,且四邊形
是邊長為2的正方形.
(1)求橢圓方程;
(2)若
分別是橢圓長軸的左右端點,動點
滿足
,連接
,交橢圓于點
,證明:
為定值;
(3)在(2)的條件下,試問
軸上是否存在異于點
的定點
,使得以
為直徑的圓恒過直線
的交點?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知頂點在原點O,焦點在x軸上的拋物線過點
(3,).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線y=x-2交于A、B兩點,求證:k
OA•k
OB=-4.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
的三個頂點在拋物線
:
上,
為拋物線
的焦點,點
為
的中點,
;
(1)若
,求點
的坐標(biāo);
(2)求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓
的方程為
,定直線
的方程為
.動圓
與圓
外切,且與直線
相切.
(1)求動圓圓心
的軌跡
的方程;
(2)直線
與軌跡
相切于第一象限的點
, 過點
作直線
的垂線恰好經(jīng)過點
,并交軌跡
于異于點
的點
,求直線
的方程及
的長.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的右焦點為
,離心率
,
是橢圓上的動點.
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)若直線
與
的斜率乘積
,動點
滿足
,(其中實數(shù)
為常數(shù)).問是否存在兩個定點
,使得
?若存在,求
的坐標(biāo)及
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過點
與拋物線
有且只有一個交點的直線有( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,短軸端點分別為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若
,
是橢圓
上關(guān)于
軸對稱的兩個不同點,直線
與
軸交于點
,判斷以線段
為直徑的圓是否過點
,并說明理由.
查看答案和解析>>