【題目】已知函數(shù)f(x)=lg(3+x)﹣lg(3﹣x)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)若f(a)=4,求f(﹣a)的值.
【答案】
(1)解:函數(shù)f(x)=lg(3+x)﹣lg(3﹣x)
其定義域滿(mǎn)足: ,解得:﹣3<x<3.
故得f(x)的定義域數(shù)為{x|﹣3<x<3}
(2)解:由(1)可得f(x)的定義域數(shù)為{x|﹣3<x<3}.設(shè)﹣3<x1<x2<3,
則f(x1)﹣f(x2)=lg(3+x1)﹣lg(3﹣x1)﹣lg(3+x2)+lg(3﹣x2)=lg =lg
因?yàn)?+3(x1﹣x2)﹣x1x2>9+(x2﹣x1)﹣x1x2<0,
∴ <1,
即f(x1)﹣f(x2)<0,所以f(x1)<f(x2),即f(x)是(﹣3,3)上的增函數(shù)
(3)解:∵函數(shù)的定義域?yàn)椋ī?,3).
∴定義域關(guān)于原點(diǎn)對(duì)稱(chēng),
∵f(﹣x)=lg(3﹣x)+lg(3+x)=f(x),
∴函數(shù)f(x)是偶函數(shù).
∴f(a)=4,則f(﹣a)=f(a)=4
【解析】(1)根據(jù)對(duì)數(shù)函數(shù)的真數(shù)要大于0列不等式組求解定義域.(2)利用定義證明其單調(diào)性.(3)判斷函數(shù)的奇偶性,f(a)=4,求解f(﹣a)的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的定義域及其求法(求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零),還要掌握函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在D上的函數(shù)f(x),如果滿(mǎn)足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)f(x)的上界.已知函數(shù) .
(1)若f(x)是奇函數(shù),求m的值;
(2)當(dāng)m=1時(shí),求函數(shù)f(x)在(﹣∞,0)上的值域,并判斷函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(3)若函數(shù)f(x)在[0,1]上是以3為上界的函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的奇函數(shù),設(shè)其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有,令,則滿(mǎn)足的實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ( 為實(shí)常數(shù)).
(Ⅰ)若 ,作函數(shù) 的圖像;
(Ⅱ)設(shè)在區(qū)間[1,2]上的最小值為 ,求的表達(dá)式;
(Ⅲ)設(shè) ,若函數(shù)在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)圓的擺線過(guò)一定點(diǎn)(2,0),請(qǐng)寫(xiě)出該圓的半徑最大時(shí)該擺線的參數(shù)方程以及對(duì)應(yīng)的圓的漸開(kāi)線的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)對(duì)籃球運(yùn)動(dòng)員的籃球技能進(jìn)行統(tǒng)計(jì)研究,針對(duì)籃球運(yùn)動(dòng)員在投籃命中時(shí),運(yùn)動(dòng)員到籃筐中心的水平距離這項(xiàng)指標(biāo),對(duì)某運(yùn)動(dòng)員進(jìn)行了若干場(chǎng)次的統(tǒng)計(jì),依據(jù)統(tǒng)計(jì)結(jié)果繪制如下頻率分布直方圖:
(I)依據(jù)頻率分布直方圖估算該運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離的中位數(shù);
(II)在某場(chǎng)比賽中,考察他前4次投籃命中時(shí)到籃筐中心的水平距離的情況,并且規(guī)定:運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機(jī)變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知☉O1和☉O2的極坐標(biāo)方程分別是ρ=2cosθ和ρ=2asinθ(a是非零常數(shù))
(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程
(2)若兩圓的圓心距為 ,求a的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】蘭州一中在世界讀書(shū)日期間開(kāi)展了“書(shū)香校園”系列讀書(shū)教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱(chēng)為“讀書(shū)迷”,低于60分鐘的學(xué)生稱(chēng)為“非讀書(shū)迷”。
非讀書(shū)迷 | 讀書(shū)迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 |
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)迷”與性別有關(guān)?
(2)利用分層抽樣從這100名學(xué)生的“讀書(shū)迷”中抽取8名進(jìn)行集訓(xùn),從中選派2名參加蘭州市讀書(shū)知識(shí)比賽,求至少有一名男生參加比賽的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-lnx。
(Ⅰ)當(dāng)a=時(shí),判斷f(x)的單調(diào)性;(Ⅱ)設(shè)f(x)≤x3+4x-lnx,在定義域內(nèi)恒成立,求a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com