【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員到籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結果繪制如下頻率分布直方圖:

(I)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);

(II)在某場比賽中,考察他前4次投籃命中時到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和均值.

【答案】(Ⅰ)4.25;(Ⅱ)答案見解析.

【解析】試題分析:

(1)由題意結合中位數(shù)將頻率分布直方圖分成左右面積相等的兩部分列出方程,解方程可得:運動員到籃筐中心的水平距離的中位數(shù)是4.25.

(2)由題意可知隨機變量X的所有可能取值為-4,-2,0,2,4.

利用二項分布公式首先求得概率值,然后得出分布列,結合分布列計算可得均值為.

試題解析:

(I)設該運動員到籃筐中心的水平距離的中位數(shù)為x,

0.20×10.20<0.5,且(0.400.20)×10.6>0.5;

x[45].

0.40×(5x)0.20×10.5,解得x4.25

∴該運動員到籃筐中心的水平距離的中位數(shù)是4.25.

(II)由頻率分布直方圖可知投籃命中時到籃筐中心距離超過4米的概率為p,

隨機變量X的所有可能取值為-4,-20,2,4.

,

,

,

,

,

X的分布列為:

X

4

2

0

2

4

P

E(X)(4)×(2)×..

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義R上的偶函數(shù),且當x∈[0,+∞)時,函數(shù)f(x)是單調遞減函數(shù),則f(log25),f(log3 ),f(log53)大小關系是(
A.f(log3 )<f(log53)<f(log25)
B.f(log3 )<f(log25)<f(log53)
C.f(log53)<f(log3 )<f(log25)
D.f(log25)<f(log3 )<f(log53)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( )(結果保留一位小數(shù).參考數(shù)據(jù):)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若對任意m,n∈[﹣1,1],m+n≠0,都有
(1)用定義證明函數(shù)f(x)在定義域上是增函數(shù);
(2)若 ,求實數(shù)a的取值范圍;
(3)若不等式f(x)≤(1﹣2a)t+2對所有和x∈[﹣1,1],a∈[﹣1,1]都恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lg(3+x)﹣lg(3﹣x)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)若f(a)=4,求f(﹣a)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓O1和圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經(jīng)過圓O1、圓O2交點的直線的直角坐標方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在圓上, 的坐標分別為 ,線段的垂直平分線交線段于點

1)求點的軌跡的方程;

2)設圓與點的軌跡交于不同的四個點,求四邊形的面積的最大值及相應的四個點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產品的三個質量指標分別為x,y,z,用綜合指標S=x+y+z評價該產品的等級.若S≤4,則該產品為一等品.現(xiàn)從一批該產品中,隨機抽取10件產品作為樣本,其質量指標列表如下:

產品編號

A1

A2

A3

A4

A5

質量指標
x , y , z

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產品編號

A6

A7

A8

A9

A10

質量指標
x , y , z

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的樣本數(shù)據(jù)估計該批產品的一等品率.
(2)在該樣品的一等品中,隨機抽取2件產品, ①用產品編號列出所有可能的結果;
②設事件B為“在取出的2件產品中,每件產品的綜合指標S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為考察高中生的性別與喜歡數(shù)學課程之間的關系,在某學校高中生中隨機抽取了250名學生,得到如圖的二維條形圖.

(1)根據(jù)二維條形圖,完成下表:

合計

喜歡數(shù)學課程

不喜歡數(shù)學課程

合計


(2)對照如表,利用列聯(lián)表的獨立性檢驗估計,請問有多大把握認為“性別與喜歡數(shù)學有關系”?

查看答案和解析>>

同步練習冊答案