11.已知函數(shù)f(x)的定義域?yàn)閇0,1],求函數(shù)y=f(x+a)-f(x-a)(-$\frac{1}{2}$<a<$\frac{1}{2}$且a≠0)的定義域.

分析 由函數(shù)的定義域列出不等式組,分別求出每個(gè)不等式的解集,再根據(jù)a的范圍比較出端點(diǎn)值得大小后,求交集即是所求的定義域.

解答 解:∵f(x)的定義域?yàn)閇0,1],
∴$\left\{\begin{array}{l}{0≤x+a≤1}\\{0≤x-a≤1}\end{array}\right.$,解得 $\left\{\begin{array}{l}{-a≤x≤1-a}\\{a≤x≤1+a}\end{array}\right.$,
∵-$\frac{1}{2}$<a<$\frac{1}{2}$,∴1-a-a=1-2a>0,則1-a>a,
∴a≤x≤1-a,
則所求函數(shù)的定義域是[a,1-a].

點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的定義域的求法,即根據(jù)已知函數(shù)的定義域列出不等式組,求每個(gè)不等式解集的交集時(shí),一定要注意端點(diǎn)處值得大。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.一艘船的燃料費(fèi)與船速度的平方成正比,如果此船速度是10km/h,那么每小時(shí)的燃料費(fèi)是80元,已知船航行時(shí)其他費(fèi)用為320元/時(shí),在20km航程中,船速不得超過(guò)akm/h(a為常數(shù)且a>0),船速多少時(shí)船行駛總費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{x}^{2},x≤0}\end{array}\right.$,若f(4)=2f(a),則實(shí)數(shù)a的值為( 。
A.-1或2B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某商店購(gòu)進(jìn)12件同品牌的衣服,其中10件是正品,其余2件是次品,從中無(wú)放回地任取2件,則取出的2件衣服中,至少有1件是次品的概率是(  )
A.$\frac{1}{3}$B.$\frac{5}{33}$C.$\frac{10}{33}$D.$\frac{7}{22}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2x-1,集合A={x|1≤x≤2}.
(1)記函數(shù)f(x)在A上的值域?yàn)镃,若函數(shù)G(x)=x2+2x+t,x∈[0,1]的值域?yàn)锽,且C∪B=B,求實(shí)數(shù)t的取值范圍;
(2)若?x∈A,[f(log2x)]2+2af(log2x)+a>-5恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對(duì)任意的x∈R,f(x+2)=$\frac{1}{f(x)}$,當(dāng)x∈[-2,0)時(shí),f(x)=log2(x+3),則f(2017)-f(2015)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知命題P:?x∈(2,3),x2+5>ax是假命題,則實(shí)數(shù)a的取值范圍是( 。
A.[$2\sqrt{5}$,+∞)B.[$\frac{9}{2}$,+∞)C.[$\frac{14}{3}$,+∞)D.(-∞,$2\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}中,an-an-1=-2(n≥2,n∈N*),a1=5.
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)求數(shù)列{|an|}的前10項(xiàng)和T10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知直線l經(jīng)過(guò)圓${C_1}:{(x+3)^2}+{(y-3)^2}=13$與圓${C_2}:{x^2}+{y^2}=1$的兩個(gè)公共點(diǎn).
(1)求直線l的方程;
(2)若圓心為C的圓經(jīng)過(guò)點(diǎn)A(3,-3)和點(diǎn)B(1,1),且圓心在直線l上,求圓心為C的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案