3.設(shè)函數(shù)y=xsinx+cosx的圖象上的點(x0,y0)處的切線的斜率為k,若k=g(x0),則函數(shù)k=g(x0)的圖象大致為( 。
A.B.C.D.

分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的解析式,然后判斷函數(shù)的圖象.

解答 解:函數(shù)y=xsinx+cosx的圖象上的點(x0,y0)處的切線的斜率為k,
可得y′=sinx+xcosx-sinx=xcosx.
k=x0cosx0.這個函數(shù)是奇函數(shù),可得B、C錯誤;
當x0∈(0,$\frac{π}{2}$)時,k>0,所以A正確,D錯誤.
故選:A.

點評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的圖象的判斷,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,其兩個焦點與短軸的一個頂點是正三角形的三個頂點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)動點P在橢圓C上,直線l:x=4與x軸交于點N,PM⊥l于點M(M,N不重合),試問在x軸上是否存在定點T,使得∠PTN的平分線過PM中點,如果存在,求定點T的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,BC為圓O的直徑,A為圓O上一點,過點A作圓O的切線交BC的延長線于點P,AH⊥PB于H.
求證:PA•AH=PC•HB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知三棱錐P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=$\sqrt{3}$AB,若三棱錐P-ABC的體積為$\frac{3}{2}$,則該三棱錐的外接球的體積為( 。
A.8$\sqrt{3}$πB.6$\sqrt{3}$πC.4$\sqrt{3}$πD.2$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)角α、β是銳角,若(1+tanα)(1+tanβ)=2,則α+β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z為純虛數(shù),若(2-i)•z=a+i,則實數(shù)a=( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)全集U=R,集合A={x|(x-2)(x-4)<0},B={x||x|<3},則A∩B=(2,3),A∪B=(-3,4),∁UB=(-∞,3]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.不等式$\frac{{|{x+1}|}}{{|{x-2}|}}$≥1的解集是[$\frac{1}{2}$,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,已知a=2,b=3,那么$\frac{sinA}{sin(A+C)}$=$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案