分析 (1)利用函數(shù)y=Asin(ωx+φ)的周期等于$\frac{2π}{ω}$,得出結論.
(2)利用正弦函數(shù)的值域求得函數(shù)的最小值為-2,再根據2x+$\frac{π}{3}$=2kπ-$\frac{π}{2}$,求得x的值,可得函數(shù)取得最小值時相應的x值.
(3)利用正弦函數(shù)的單調性,求得f(x)的單調遞增區(qū)間.
解答 解:(1)∵$f(x)=2sin(2x+\frac{π}{3})$,∴$T=\frac{2π}{2}=π$,即函數(shù)f(x)的最小正周期是π.
(2)令$t=2x+\frac{π}{3}$,使函數(shù)f(t)=2sint,t∈R取得最小值的t的集合是$\{t|t=-\frac{π}{2}+2kπ,k∈Z\}$.
由 2x+$\frac{π}{3}$=2kπ-$\frac{π}{2}$,求得 $x=kπ-\frac{5π}{12},k∈Z$.
因此函數(shù)$f(x)=2sin(2x+\frac{π}{3})$的最小值為-2,此時x的取值集合是$\{x|x=kπ-\frac{5π}{12},k∈Z\}$.
(3)由 $-\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{π}{2}+2kπ$,k∈Z,求得 $kπ-\frac{5π}{12}≤x≤kπ+\frac{π}{12},k∈Z$.
所以,函數(shù)$f(x)=2sin(2x+\frac{π}{3})$的單調遞增區(qū)間是$[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈Z)$.
點評 本題主要考查正弦函數(shù)的周期性、最值、以及單調性,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({\sqrt{2},2}]$ | B. | $({1,\sqrt{2}}]$ | C. | $({\sqrt{2},+∞})$ | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
第22題 | 第23題 | 第24題 | |
甲 | $\frac{1}{6}$ | $\frac{1}{2}$ | $\frac{1}{3}$ |
乙 | $\frac{2}{3}$ | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com