【題目】已知函數(shù)(是自然對數(shù)的底數(shù)),
(1)求曲線在點處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中為的導(dǎo)函數(shù),證明:對任意,
【答案】(Ⅰ) ;(Ⅱ) 的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;(Ⅲ)見解析.
【解析】試題分析:(1)對函數(shù)f(x)求導(dǎo), ,代入x=1,可求得,切點坐標(biāo)再點斜式可求切線方程。(2)定義域因為又得,可得單調(diào)區(qū)間。(3), 等價于在時恒成立,由(2)知,當(dāng)時, 的最大值,即證。
試題解析:(Ⅰ) 的定義域為,
由,得,∴點A的坐標(biāo)為.
,所以,
所以曲線點A處的切線方程為
(Ⅱ),所以
令得,因此當(dāng)時, 單調(diào)遞增;
當(dāng)時, 單調(diào)遞減.
所以的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為.
(Ⅲ)證明:因為,所以, 等價于在時恒成立,
由(Ⅱ)知,當(dāng)時, 的最大值,
故,
因為時,
所以,
因此任意, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了分析某個高三學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議.現(xiàn)對他前次考試的數(shù)學(xué)成績、物理成績進(jìn)行分析.下面是該生次考試的成績.
數(shù)學(xué) | 108 | 103 | 137 | 112 | 128 | 120 | 132 |
物理 | 74 | 71 | 88 | 76 | 84 | 81 | 86 |
(Ⅰ)他的數(shù)學(xué)成績與物理成績哪個更穩(wěn)定?請給出你的說明;
(Ⅱ)已知該生的物理成績與數(shù)學(xué)成績是線性相關(guān)的,求物理成績與數(shù)學(xué)成績的回歸直線方程
(Ⅲ)若該生的物理成績達(dá)到90分,請你估計他的數(shù)學(xué)成績大約是多少?
(附: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(, )展開式的前三項的二項式系數(shù)之和為16,所有項的系數(shù)之和為1.
(1)求和的值;
(2)展開式中是否存在常數(shù)項?若有,求出常數(shù)項;若沒有,請說明理由;
(3)求展開式中二項式系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(得分均為整數(shù),滿足100分)進(jìn)行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.
分組 | 頻數(shù) | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計 | 100 | 1.00 |
(1)求的值及隨機(jī)抽取一考生恰為優(yōu)秀生的概率;
(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動,求其中優(yōu)秀生的人數(shù);
(3)在第(2)問抽取的優(yōu)秀生中指派2名學(xué)生擔(dān)任負(fù)責(zé)人,求至少一人的成績在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時,若存在實數(shù)使得不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰直角三角形中, , 為的中點,點在上,且,現(xiàn)沿將折起到的位置,使,點在上,且.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(θ為參數(shù)),將上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的和2倍后得到曲線,以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)試寫出曲線的極坐標(biāo)方程與曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最小,并求此最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù)是自然對數(shù)的底數(shù), .
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若為整數(shù), ,且當(dāng)時, 恒成立,其中為的導(dǎo)函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車托運重量為P(kg)的貨物時,托運每千米的費用(單位:元)標(biāo)準(zhǔn)為:
y=
試編寫一程序求行李托運費.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com