【題目】為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議.現(xiàn)對(duì)他前次考試的數(shù)學(xué)成績(jī)、物理成績(jī)進(jìn)行分析.下面是該生次考試的成績(jī).

數(shù)學(xué)

108

103

137

112

128

120

132

物理

74

71

88

76

84

81

86

(Ⅰ)他的數(shù)學(xué)成績(jī)與物理成績(jī)哪個(gè)更穩(wěn)定?請(qǐng)給出你的說(shuō)明;

(Ⅱ)已知該生的物理成績(jī)與數(shù)學(xué)成績(jī)是線性相關(guān)的,求物理成績(jī)與數(shù)學(xué)成績(jī)的回歸直線方程

(Ⅲ)若該生的物理成績(jī)達(dá)到90分,請(qǐng)你估計(jì)他的數(shù)學(xué)成績(jī)大約是多少?

(附:

【答案】(1)見(jiàn)解析;(2);(3)數(shù)學(xué)140.

【解析】【試題分析】(1)依據(jù)題設(shè)條件,運(yùn)用平均數(shù)、方差公式分析求解;(2)借助回歸方程系數(shù)公式分析探求;(3)借助線性相關(guān)的回歸方程求解:

(1)數(shù)學(xué)

物理, 物理成績(jī)更穩(wěn)定.

數(shù)學(xué)140.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖1)和女生身高情況的頻率分布直方圖(圖2).已知圖1中身高在170~175cm的男生人數(shù)有16人.

(1)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分幾)的把握認(rèn)為“身高與性別有關(guān)”?

總計(jì)

男生身高

女神身高

總計(jì)

(2)在上述80名學(xué)生中,從身高在170-175cm之間的學(xué)生按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.

參考公式:

參考數(shù)據(jù):

0.025

0.610

0.005

0.001

5.024

4.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點(diǎn), , .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過(guò),交直線于點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用秦九韶算法求多項(xiàng)式f(x)=x6-5x5+6x4+x2+0.3x+2當(dāng)x=-2時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ,( 為常數(shù))

(1)若處的切線方程為為常數(shù)),求的值;

(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得同時(shí)成立,求實(shí)數(shù)的取值范圍;

(3)令,若函數(shù)存在極值,且所有極值之和大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面 平面, , , , 分別為, 的中點(diǎn).

1)求證: 平面;

2)求證:平面 平面

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫(xiě)出的普通方程和的直角坐標(biāo)方程;

2)設(shè)點(diǎn)上,點(diǎn)上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為美化小區(qū)環(huán)境,某社區(qū)針對(duì)公民亂扔垃圾的現(xiàn)象進(jìn)行了罰款處罰,并隨機(jī)抽取了200人進(jìn)行調(diào)查,得到如下數(shù)據(jù):

(1)若亂扔垃圾的人數(shù)與罰款金額(單位:元)滿足線性回歸關(guān)系,求回歸方程;

(2)由(1)得到的回歸方程分析要使亂扔垃圾的人數(shù)不超過(guò),罰款金額至少是多少元?

參考公式:兩個(gè)具有線性關(guān)系的變量的一組數(shù)據(jù): ,

其回歸方程為,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)),

(1)求曲線在點(diǎn)處的切線方程;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù),證明:對(duì)任意,

查看答案和解析>>

同步練習(xí)冊(cè)答案