11.如圖所示,已知空間四邊形OABC的對(duì)邊OA,BC的中點(diǎn)分別為P、Q,OB、CA的中點(diǎn)分別為R、S,OC、AB的中點(diǎn)分別為E、F,求證三條線段PQ,RS,EF交于一點(diǎn).

分析 根據(jù)題意,畫出圖形,結(jié)合圖形,證明四邊形PEQF與四邊形ESFR是平行四邊形,
三條對(duì)角線互相平分,交于一點(diǎn).

解答 證明:如圖所示,
∵OA,BC的中點(diǎn)分別為P、Q,
∴PE∥AC,且PE=$\frac{1}{2}$AC;
同理,F(xiàn)Q∥AC,F(xiàn)Q=$\frac{1}{2}$AC;
∴PE∥FQ,且PE=FQ,
∴四邊形PEQF是平行四邊形,
∴PQ與EF互相平分,設(shè)交點(diǎn)為M,則M為EF的中點(diǎn);
同理,四邊形ESFR也是平行四邊形,EF與RS也互相平分,即交于EF的中點(diǎn)M;
即三條線段PQ,RS,EF交于一點(diǎn).

點(diǎn)評(píng) 本題考查了空間幾何體平行關(guān)系的應(yīng)用問題,也考查了平行四邊形的判斷與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,當(dāng)x∈[0,100]時(shí),關(guān)于x的方程f(x)=x-$\frac{1}{5}$的所有解的和為( 。
A.9801B.9950C.10000D.10201

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.閱讀如圖的程序框圖,則輸出的S=( 。
A.14B.20C.30D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若命題”?x∈R,使x2+(2a-1)x+1<0”是假命題,則實(shí)數(shù)a的取值范圍為$[-\frac{1}{2},\frac{3}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個(gè)焦點(diǎn)F1(-2,0),右準(zhǔn)線方程x=8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若M為右準(zhǔn)線上的一點(diǎn),A為橢圓C的左頂點(diǎn),連接AM交橢圓于點(diǎn)P,求$\frac{PM}{AP}$的取值范圍;
(3)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)Q是橢圓上異于A,B的任意一點(diǎn),直線AQ交l于點(diǎn)M.設(shè)直線OM的斜率為k1,直線BQ的斜率為k2,求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C1:$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0)與拋物線C2:x2=2py(p>0)有一公共焦點(diǎn),拋物線C2的準(zhǔn)線l與橢圓C1有一交點(diǎn)坐標(biāo)是($\sqrt{2}$,-2).
(1)求橢圓C1與拋物線C2的方程;
(2)若點(diǎn)P是直線l上的動(dòng)點(diǎn),過點(diǎn)P作拋物線的兩條切線,切點(diǎn)分別為A,B,直線AB與橢圓C1分別交于點(diǎn)E,F(xiàn),求$\overrightarrow{OE}$•$\overrightarrow{OF}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線x=-2的傾斜角和斜率分別是( 。
A.45°,1B.135°,-1C.90°,不存在D.180°,不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=x2-|x|-a-1有四個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是$-\frac{5}{4}$<a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)點(diǎn)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$與圓x2+y2=2a2的一個(gè)交點(diǎn),F(xiàn)1、F2分別是雙曲線的左右焦點(diǎn),且PF1=3PF2,則雙曲線的離心率為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案