17.復(fù)數(shù)3i(1+i)的實部和虛部分別為( 。
A.3,3B.-3,3C.3,3iD.-3,3i

分析 利用復(fù)數(shù)代數(shù)形式的乘法運算化簡得答案.

解答 解:∵3i(1+i)=-3+3i,
∴復(fù)數(shù)3i(1+i)的實部和虛部分別為-3,3.
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點(0,2)關(guān)于直線l的對稱點為(4,0),點(6,3)關(guān)于直線l的對稱點為(m,n),則m+n=$\frac{33}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知p:函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函數(shù),q:函數(shù)f(x)=xa-2在(0,+∞)上是增函數(shù),則p是¬q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知A,B,C是半徑為l的圓O上的三點,AB為圓O的直徑,P為圓O內(nèi)一點(含圓周),則$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$的取值范圍為[-$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)集合A={1,3},B={a+2,5},A∩B={3},則A∪B={1,3,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.等比數(shù)列{an}的公比為-$\sqrt{2}$,則ln(a20172-ln(a20162=ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)={e^x},g(x)=\frac{a}{x}$,a為實常數(shù).
(1)設(shè)F(x)=f(x)-g(x),當(dāng)a>0時,求函數(shù)F(x)的單調(diào)區(qū)間;
(2)當(dāng)a=-e時,直線x=m、x=n(m>0,n>0)與函數(shù)f(x)、g(x)的圖象一共有四個不同的交點,且以此四點為頂點的四邊形恰為平行四邊形.
求證:(m-1)(n-1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x|+|x+1|.
(1)若?x∈R,恒有f(x)≥λ成立,求實數(shù)λ的取值范圍;
(2)若?m∈R,使得m2+2m+f(t)=0成立,試求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)=$\frac{(4x+a)lnx}{3x+1}$,曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若對于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范圍;
(Ⅲ)求證:ln(4n+1)≤16$\sum_{i=1}^{n}$$\frac{i}{(4i+1)(4i-3)}$(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案