【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各隨機抽取了100件產(chǎn)品作為樣本來檢測一項質(zhì)量指標值,若產(chǎn)品的該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖是乙套設(shè)備的樣本的頻率分布直方圖.

表甲套設(shè)備的樣本的頻數(shù)分布表

質(zhì)量指標值

頻數(shù)

2

10

36

38

12

2

(1)將頻率視為概率.若乙套設(shè)備生產(chǎn)了10000件產(chǎn)品,則其中的合格品約有多少件?

(2)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下,認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān).

甲套設(shè)備

乙套設(shè)備

合計

合格品

不合格品

合計

附表及公式:,其中;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)8600件;(2)列聯(lián)表見解析,不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān).

【解析】

1)計算出不合格品率,和不合格品件數(shù),由此求得合格品件數(shù).2)根據(jù)題目所給表格和圖像數(shù)據(jù),填寫好聯(lián)表,計算出的值,由此判斷出“不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān).”

解:(1)由題圖1知,乙套設(shè)備生產(chǎn)的不合格品的概率約為

∴乙套設(shè)備生產(chǎn)的10000件產(chǎn)品中不合格品約為(件),

故合格品的件數(shù)為(件).

(2)由題中的表1和圖1得到2×2列聯(lián)表如下:

甲套設(shè)備

乙套設(shè)備

合計

合格品

96

86

182

不合格品

4

14

18

合計

100

100

200

將2×2列聯(lián)表中的數(shù)據(jù)代入公式計算得的觀測值

因為6.105<6.635,

所以不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A{x|(x3)(xa)<0,a∈R},集合B{xZ|x23x4<0}

(1)AB的子集個數(shù)為4,求a的范圍;

(2)aZ,當(dāng)AB時,求a的最小值,并求當(dāng)a取最小值時AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半徑為2的圓周上的定點,P為圓周上的動點,是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為

A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,,

(Ⅰ)設(shè)分別為的中點,求證:平面

(Ⅱ)求證:平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天津大學(xué)某學(xué)院欲安排4名畢業(yè)生到某外資企業(yè)的三個部門實習(xí),要求每個部門至少安排1人,其中甲大學(xué)生不能安排到部門工作的方法有_______種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標系與參數(shù)方程】

在平面直角坐標系中,曲線的參數(shù)方程為: 為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.

(1)以原點為極點, 軸的正半軸為極軸建立坐標系,求的極坐標方程;

(2)若直線為參數(shù))與相交于兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長方形,且,的中點,作于點.

(1)證明:平面;

(2)若三棱錐的體積為,求直線與平面所成角的正弦值;

(3)在(2)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,的中點.、分別是上的動點(含端點),且滿足.當(dāng)運動時,下列結(jié)論中正確的是______ (填上所有正確命題的序號).

①平面平面;

②三棱錐的體積為定值;

可能為直角三角形;

④平面與平面所成的銳二面角范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對任意的正整數(shù) ,都有

④存在最大的正數(shù),使得對任意的正整數(shù),都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案