【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各隨機抽取了100件產(chǎn)品作為樣本來檢測一項質(zhì)量指標值,若產(chǎn)品的該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖是乙套設(shè)備的樣本的頻率分布直方圖.
表甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標值 | ||||||
頻數(shù) | 2 | 10 | 36 | 38 | 12 | 2 |
(1)將頻率視為概率.若乙套設(shè)備生產(chǎn)了10000件產(chǎn)品,則其中的合格品約有多少件?
(2)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下,認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān).
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附表及公式:,其中;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)8600件;(2)列聯(lián)表見解析,不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān).
【解析】
(1)計算出不合格品率,和不合格品件數(shù),由此求得合格品件數(shù).(2)根據(jù)題目所給表格和圖像數(shù)據(jù),填寫好聯(lián)表,計算出的值,由此判斷出“不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān).”
解:(1)由題圖1知,乙套設(shè)備生產(chǎn)的不合格品的概率約為,
∴乙套設(shè)備生產(chǎn)的10000件產(chǎn)品中不合格品約為(件),
故合格品的件數(shù)為(件).
(2)由題中的表1和圖1得到2×2列聯(lián)表如下:
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |
合格品 | 96 | 86 | 182 |
不合格品 | 4 | 14 | 18 |
合計 | 100 | 100 | 200 |
將2×2列聯(lián)表中的數(shù)據(jù)代入公式計算得的觀測值,
因為6.105<6.635,
所以不能在犯錯誤的概率不超過0.01的前提下可以認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個數(shù)為4,求a的范圍;
(2)若a∈Z,當(dāng)A∩B≠時,求a的最小值,并求當(dāng)a取最小值時A∪B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是半徑為2的圓周上的定點,P為圓周上的動點,是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為
A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,,
(Ⅰ)設(shè)分別為的中點,求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天津大學(xué)某學(xué)院欲安排4名畢業(yè)生到某外資企業(yè)的三個部門實習(xí),要求每個部門至少安排1人,其中甲大學(xué)生不能安排到部門工作的方法有_______種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在平面直角坐標系中,曲線的參數(shù)方程為: (為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.
(1)以原點為極點, 軸的正半軸為極軸建立坐標系,求的極坐標方程;
(2)若直線(為參數(shù))與相交于兩點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長方形,且,是的中點,作交于點.
(1)證明:平面;
(2)若三棱錐的體積為,求直線與平面所成角的正弦值;
(3)在(2)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長均相等,為的中點.、分別是、上的動點(含端點),且滿足.當(dāng)運動時,下列結(jié)論中正確的是______ (填上所有正確命題的序號).
①平面平面;
②三棱錐的體積為定值;
③可能為直角三角形;
④平面與平面所成的銳二面角范圍為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對任意的正整數(shù) ,都有 ;
④存在最大的正數(shù),使得對任意的正整數(shù),都有.
其中真命題的序號是________________(請寫出所有真命題的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com