【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,

(Ⅰ)設(shè)分別為的中點(diǎn),求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求直線(xiàn)與平面所成角的正弦值.

【答案】I)見(jiàn)解析;(II)見(jiàn)解析;(III.

【解析】

I)連接,結(jié)合平行四邊形的性質(zhì),以及三角形中位線(xiàn)的性質(zhì),得到,利用線(xiàn)面平行的判定定理證得結(jié)果;

II)取棱的中點(diǎn),連接,依題意,得,結(jié)合面面垂直的性質(zhì)以及線(xiàn)面垂直的性質(zhì)得到,利用線(xiàn)面垂直的判定定理證得結(jié)果;

III)利用線(xiàn)面角的平面角的定義得到為直線(xiàn)與平面所成的角,放在直角三角形中求得結(jié)果.

I)證明:連接,易知,,

又由,故,

又因?yàn)?/span>平面,平面,

所以平面.

II)證明:取棱的中點(diǎn),連接,依題意,得,

又因?yàn)槠矫?/span>平面,平面平面

所以平面,又平面,故

又已知,,

所以平面.

III)解:連接,由(II)中平面,

可知為直線(xiàn)與平面所成的角.

因?yàn)?/span>為等邊三角形,的中點(diǎn),

所以,又,

中,,

所以,直線(xiàn)與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)劃在某水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過(guò)去50年的水文資料顯示,水庫(kù)年入流量X(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過(guò)120的年份有35年,超過(guò)120的年份有5年,如將年人流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.

(1)求未來(lái)4年中,至多有1年的年入流量超過(guò)120的概率;(,

(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行最多,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量X限制,并有如下關(guān)系:

年流入量

發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)

1

2

3

若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為4000萬(wàn)元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損600萬(wàn)元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[10.5,14.5)  2  [14.5,18.5)  4 [18.5,22.5)  9 [22.5,26.5)  18

[26.5,30.5)  11  [30.5,34.5)  12 [34.5,38.5)  8  [38.5,42.5)  2

根據(jù)樣本的頻率分布估計(jì),數(shù)據(jù)落在[30.5,42.5)內(nèi)的概率約是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司最近4年對(duì)某種產(chǎn)品投入的宣傳費(fèi)萬(wàn)元與年銷(xiāo)售量之間的關(guān)系如下表所示.

1

4

9

16

168.6

236.6

304.6

372.6

1)根據(jù)以上表格中的數(shù)據(jù)判斷:哪一個(gè)更適宜作為的函數(shù)模型?

2)已知這種產(chǎn)品的年利潤(rùn)萬(wàn)元與的關(guān)系為,則年宣傳費(fèi)為多少時(shí)年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)有兩個(gè)零點(diǎn),;

(i)求滿(mǎn)足條件的最小正整數(shù)的值.

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,若在,,四個(gè)點(diǎn)中有3個(gè)在上.

(1)求橢圓的方程;

(2)若點(diǎn)與點(diǎn)是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各隨機(jī)抽取了100件產(chǎn)品作為樣本來(lái)檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖是乙套設(shè)備的樣本的頻率分布直方圖.

表甲套設(shè)備的樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

2

10

36

38

12

2

(1)將頻率視為概率.若乙套設(shè)備生產(chǎn)了10000件產(chǎn)品,則其中的合格品約有多少件?

(2)填寫(xiě)下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān).

甲套設(shè)備

乙套設(shè)備

合計(jì)

合格品

不合格品

合計(jì)

附表及公式:,其中;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】手機(jī)廠(chǎng)商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:

女性用戶(hù)

分值區(qū)間

[50,60

[6070

[70,80

[80,90

[90,100]

頻數(shù)

20

40

80

50

10

男性用戶(hù)

分值區(qū)間

[50,60

[60,70

[70,80

[80,90

[90100]

頻數(shù)

45

75

90

60

30

(1)完成下列頻率分布直方圖,并比較女性用戶(hù)和男性用戶(hù)評(píng)分的波動(dòng)大小(不計(jì)算具體值,給出結(jié)論即可);

(2)把評(píng)分不低于70分的用戶(hù)稱(chēng)為評(píng)分良好用戶(hù),能否有的把握認(rèn)為評(píng)分良好用戶(hù)與性別有關(guān)?

參考附表:

參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x|x-a|+bxa,bR).

(Ⅰ)當(dāng)b=-1時(shí),函數(shù)fx)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的值;

(Ⅱ)當(dāng)b=1時(shí),

①若對(duì)于任意x∈[1,3],恒有fx)≤2x2,求a的取值范圍;

②若a≥2,求函數(shù)fx)在區(qū)間[0,2]上的最大值ga).

查看答案和解析>>

同步練習(xí)冊(cè)答案