20.已知拋物線C:y2=4x的焦點(diǎn)為F,經(jīng)過點(diǎn)F作斜率為1的直線,與拋物線C交于A,B兩點(diǎn).
(1)求線段AB的長度;
(2)點(diǎn)P在x軸上,且$\overrightarrow{PA}$•$\overrightarrow{PB}$=-3,求點(diǎn)P的橫坐標(biāo).

分析 (1)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=x-1,聯(lián)立直線與拋物線方程可求x1+x2,x1x2,代入弦長公式|AB|=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,可求線段AB的長度;
(2)P在x軸上,設(shè)P(x,0),求得向量$\overrightarrow{PA}$=(x1-x,y1),$\overrightarrow{PB}$=(x2-x,y2),根據(jù)向量的數(shù)量積的坐標(biāo)表示,$\overrightarrow{PA}$•$\overrightarrow{PB}$=x2-6x-3,即可求得x的值.

解答 解:(1)∵拋物線y2=4x上的焦點(diǎn)F(1,0),設(shè)A(x1,y1),B(x2,y2
則可設(shè)直線AB的方程為y=x-1
聯(lián)立方程$\left\{\begin{array}{l}{y=x-1}\\{{y}^{2}=4x}\end{array}\right.$,整理得x2-6x+1=0,
由韋達(dá)定理可得:x1+x2=6,x1x2=1,
∴|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{32}$=8,
線段AB的長度8;
(2)P在x軸上,設(shè)P(x,0),
$\overrightarrow{PA}$=(x1-x,y1),$\overrightarrow{PB}$=(x2-x,y2),
$\overrightarrow{PA}$•$\overrightarrow{PB}$=(x1-x)•(x2-x)+y1y2=x1x2-x(x1+x2)+x2+x1x2-(x1+x2)+1,
=1-6x+x2+1-6+1,
=x2-6x-3,
∵$\overrightarrow{PA}$•$\overrightarrow{PB}$=-3,
x2-6x-3=-3,
解得:x=0或x=6,
點(diǎn)P的橫坐標(biāo)(0,0)或(6,0).

點(diǎn)評 本題考查拋物線的標(biāo)準(zhǔn)方程,直線與拋物線的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)表示,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.命題“?x<0,x2-2x>0”的否定形式是?x<0,x2-2x≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在[0°,360°)與-496°終邊相同的角是224°,它是第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖是一個(gè)幾何體的三視圖,則該幾何體的表面積為1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),PA=PD=AD=2.
(1)AD⊥平面PQB;
(2)已知點(diǎn)M在線段PC上,且PA∥平面MQB,求$\frac{PM}{PC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線y=kx+1是曲線y=$\frac{1}{x}$的切線,則k的值為-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)曲線y=x+1與縱軸及直線y=2所圍成的封閉圖形為區(qū)域D,不等式組$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤2\end{array}\right.$所確定的區(qū)域?yàn)镋,在區(qū)域E內(nèi)隨機(jī)取一點(diǎn),該點(diǎn)恰好在區(qū)域D的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$
C.$\frac{1}{8}$D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)f(x)=$\sqrt{3}$sin($\frac{π}{2}$+πx)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把圖象上所有的點(diǎn)向右平移1個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是( 。
A.[2k-1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=x2+ax+$\frac{{{a^2}+b-1}}{a}$.
(1)若b=-2,對任意的x∈[-2,2],都有f(x)<0成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)a≤-2,若任意x∈[-1,1],使得f(x)≤0成立,求a2+b2-8a的最小值,當(dāng)取得最小值時(shí),求實(shí)數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊答案