分析 (1)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=x-1,聯(lián)立直線與拋物線方程可求x1+x2,x1x2,代入弦長公式|AB|=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,可求線段AB的長度;
(2)P在x軸上,設(shè)P(x,0),求得向量$\overrightarrow{PA}$=(x1-x,y1),$\overrightarrow{PB}$=(x2-x,y2),根據(jù)向量的數(shù)量積的坐標(biāo)表示,$\overrightarrow{PA}$•$\overrightarrow{PB}$=x2-6x-3,即可求得x的值.
解答 解:(1)∵拋物線y2=4x上的焦點(diǎn)F(1,0),設(shè)A(x1,y1),B(x2,y2)
則可設(shè)直線AB的方程為y=x-1
聯(lián)立方程$\left\{\begin{array}{l}{y=x-1}\\{{y}^{2}=4x}\end{array}\right.$,整理得x2-6x+1=0,
由韋達(dá)定理可得:x1+x2=6,x1x2=1,
∴|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{32}$=8,
線段AB的長度8;
(2)P在x軸上,設(shè)P(x,0),
$\overrightarrow{PA}$=(x1-x,y1),$\overrightarrow{PB}$=(x2-x,y2),
$\overrightarrow{PA}$•$\overrightarrow{PB}$=(x1-x)•(x2-x)+y1y2=x1x2-x(x1+x2)+x2+x1x2-(x1+x2)+1,
=1-6x+x2+1-6+1,
=x2-6x-3,
∵$\overrightarrow{PA}$•$\overrightarrow{PB}$=-3,
x2-6x-3=-3,
解得:x=0或x=6,
點(diǎn)P的橫坐標(biāo)(0,0)或(6,0).
點(diǎn)評 本題考查拋物線的標(biāo)準(zhǔn)方程,直線與拋物線的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)表示,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | ||
C. | $\frac{1}{8}$ | D. | 以上答案均不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2k-1,2k+2](k∈Z) | B. | [2k+1,2k+3](k∈Z) | C. | [4k+1,4k+3](k∈Z) | D. | [4k+2,4k+4](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com