5.已知直線y=kx+1是曲線y=$\frac{1}{x}$的切線,則k的值為-$\frac{1}{4}$.

分析 欲求k的值,只須求出切線的斜率的值即可,故先利用導(dǎo)數(shù)求出在切處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.

解答 解:∵y=$\frac{1}{x}$,∴y'=-$\frac{1}{{x}^{2}}$,
設(shè)切點為(m,$\frac{1}{m}$),得切線的斜率為-$\frac{1}{{m}^{2}}$,
所以曲線在點(m,$\frac{1}{m}$)處的切線方程為:y-$\frac{1}{m}$=-$\frac{1}{{m}^{2}}$×(x-m).
它過(0,1),∴-$\frac{2}{m}$=1,∴m=-2,
∴k=-$\frac{1}{4}$.
故答案為-$\frac{1}{4}$.

點評 本小題主要考查直線的方程、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列四個命題正確的是①②④.(填上所有正確命題的序號)
①?x∈R,x2-x+$\frac{1}{4}$≥0;
②所有正方形都是矩形;
③?x∈R,x2+2x+2≤0;
④至少有一個實數(shù)x,使x3+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若a>1,$\int_1^a$(2x-$\frac{1}{x}$)dx=3-ln2,則a=( 。
A.6B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(a+2)lnx+$\frac{1}{2}$x2-2ax.
(1)當a=1時,求f(x)在(1,f(1))處的切線方程;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C:y2=4x的焦點為F,經(jīng)過點F作斜率為1的直線,與拋物線C交于A,B兩點.
(1)求線段AB的長度;
(2)點P在x軸上,且$\overrightarrow{PA}$•$\overrightarrow{PB}$=-3,求點P的橫坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)α為銳角,若cos(α+$\frac{π}{6}$)=$\frac{1}{2}$,則sin(2α+$\frac{π}{12}}$)的值為$\frac{{\sqrt{6}+\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是(  )
A.命題“?x∈R,使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.命題p:“$?x∈R,sinx+cosx≤\sqrt{2}$”,則¬p是真命題
C.?α,β∈R,使得sin(α-β)=sinα-sinβ成立
D.“x=-1”是“x2-2x-3=0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=2x+log3$\frac{x-1}{1-ax}$為奇函數(shù),a為常數(shù).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性,并寫出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2-(a+2)x+2(a為常數(shù)).
(Ⅰ)當a=1時,解關(guān)于x的不等式f(x)<0;
(Ⅱ)當a∈R時,解關(guān)于x的不等式f(x)<0.
(Ⅲ)若對于任意x∈[2,3],總有f(x)>0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案