【題目】已知橢圓的離心率為,點在橢圓上.
(I)求橢圓的方程;
(II)設(shè)動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點(兩點均不在坐標(biāo)軸上),且使得直線的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
【答案】(I);(II).
【解析】
試題分析:(I)借助題設(shè)條件建立方程組求解;(II)借助題設(shè)運用直線與橢圓的位置關(guān)系推證和探求.
試題解析:
(I)由題意得:,,
又點在橢圓上,∴,解得,,,
∴橢圓的方程為.………………5分
(II)存在符合條件的圓,且此圓的方程為.
證明如下:假設(shè)存在符合條件的圓,并設(shè)此圓的方程為.
當(dāng)直線的斜率存在時,設(shè)的方程為.
由方程組得.
∵直線與橢圓有且僅有一個公共點,
∴,即.
由方程組得,
則.
設(shè),則,,
設(shè)直線的斜率分別為,
∴
,將代入上式,
得.
要使得為定值,則,即,代入驗證知符合題意.
∴當(dāng)圓的方程為時,圓與的交點滿足為定值.
當(dāng)直線的斜率不存在時,由題意知的方程為.
此時,圓與的交點也滿足.
綜上,當(dāng)圓的方程為時,
圓與的交點滿足直線的斜率之積為定值.……………………12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機變量X~N(μ,σ2),且其正態(tài)曲線在(-∞,80)上是增函數(shù),在(80,+∞)上為減函數(shù),且P(72≤X≤88)=0.682 6.
(1)求參數(shù)μ,σ的值;
(2)求P(64<X≤72).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角為,的長度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻總 長度為米,如何圍可使得三角形地塊的面積最大?
(2)已知段圍墻高米,段圍墻高米,造價均為每平方米元.若圍圍墻用了元,問如何圍可使竹籬笆用料最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,點是棱的中點,,平面平面.
(Ⅰ)求證://平面;
(Ⅱ)求證:平面;
(Ⅲ) 設(shè),試判斷平面⊥平面能否成立;若成立,寫出的一個值(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是
A. 若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點;
B. 若直線與平面平行,則與平面內(nèi)的任意一條直線都平行;
C. 若直線上有無數(shù)個點不在平面 內(nèi),則;
D. 如果兩條平行線中的一條與一個平面平行,那么另一條也與這個平面平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上, , , , , , 均可為一個三角形的三邊長,則稱函數(shù)為“三角形函數(shù)”.已知函數(shù)在區(qū)間上是“三角形函數(shù)”,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的三內(nèi)角A,B,C的對邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.
(Ⅰ)求角A的大;
(Ⅱ)若,,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
試求:(1)y與x之間的回歸方程;
(2)當(dāng)使用年限為10年時,估計維修費用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com