已知{a
n},是遞增的等差數(shù)列,a
2,a
4是方程x
2-6x+8=0的根.
(Ⅰ)求{a
n}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
}的前n項(xiàng)和.
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由題意列式求出a
2,a
4,代入等差數(shù)列的通項(xiàng)公式求得公差,再代入等差數(shù)列的通項(xiàng)公式得答案;
(Ⅱ)把等差數(shù)列的通項(xiàng)公式代入數(shù)列{
},然后由錯位相減法求其和.
解答:
解:(Ⅰ)在遞增等差數(shù)列{a
n}中,
∵a
2,a
4是方程x
2-6x+8=0的根,則
,解得
.
∴d=
==1.
∴a
n=a
2+(n-2)×d=2+n-1=n+1;
(Ⅱ)∵
=
,
∴{
}的前n項(xiàng)和:
Sn=++…+ ①,
Sn=++…+ ②,
①-②得:
Sn=1+++…+-=1+
-.
∴
Sn=3-.
點(diǎn)評:本題考查了等差數(shù)列的通項(xiàng)公式,考查了錯位相減法求數(shù)列的和,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,內(nèi)角A、B的對邊分別是a、b,若a=
bsinA,且a>b,則角B等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知集合A={-1,0,1},B={x|x=|a-1|,a∈A},則A∪B中的元素的個數(shù)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在等差數(shù)列{a
n}中,前n項(xiàng)和為S
n,若S
7=70,a
2+a
3+a
4=21,則橢圓C:
+=1的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)拋物線y
2=8x的焦點(diǎn)是F,有傾斜角為45°的弦AB,|AB|=8
,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知動圓C與定圓x2+y2=1內(nèi)切,與直線x=3相切.
(1)求動圓圓心C的軌跡方程;
(2)若Q是上述軌跡上一點(diǎn),求Q到點(diǎn)P(m,0)距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
一廣告氣球被一束平行光線投射到水平地面,且與地面成45°角,在地面形成一個橢圓,則這個橢圓的離心率為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知
=(cosα,sinα),
=(cosα,sinα),且k
+
的長度是
-k
的長度的
倍(k>0).
(1)求證:
+與
-垂直;
(2)用k表示
•;
(3)用
•的最小值以及此時
與
的夾角θ.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
求下列函數(shù)值域
(1)x∈[2,3],f(x)=
;
(2)f(x)=
.
查看答案和解析>>