分析 利用已知條件,得∠AOB=$\frac{π}{2}$,兩邊平方$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m2+n2=1結(jié)合基本不等式,即可求得結(jié)論.
解答 解:設(shè)圓的半徑為1,則由題意m、n不能同時為正,
∴m+n<1…①
∵∠C=$\frac{π}{4}$,O是△ABC的外心,
∴∠AOB=$\frac{π}{2}$
兩邊平方$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,即可得出1=m2+n2+2mncos∠AOB⇒m2+n2=1…②,
∵$\frac{{m}^{2}+{n}^{2}}{2}$≥($\frac{m+n}{2}$),…③,
由①②③得-$\sqrt{2}$≤m+n≤1
故答案為:[-$\sqrt{2}$,1)
點評 本題考查向量知識的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6}{π}$ | B. | $\frac{{6\sqrt{3}}}{π}$ | C. | $\frac{4}{3}$ | D. | $\frac{{4\sqrt{3}}}{π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com