在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,一條準(zhǔn)線方程為x=4.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M,設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值.
(1)由題意得
c
a
=
1
2
a2
c
=4
a2=b2+c2
,解得
a2=4
b2=3
,∴橢圓E的標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1

(2)設(shè)P(x0,y0)(y0≠0),
則直線AP的方程為:y=
y0
x0+2
(x+2)
令x=2得M(2,
4y0
x0+2

∴k1=
2y0
x0+2
,
∵k2=
y0
x0-2

∴k1k2=
2
y20
x20
-4
,
∵P(x0,y0)在橢圓上,∴
x02
4
+
y02
3
=1
∴k1k2═-
3
2
為定值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(理)已知方程x4+y2=1,給出下列結(jié)論:①它的圖形關(guān)于x軸對(duì)稱;②它的圖形關(guān)于y軸對(duì)稱;③它的圖形是一條封閉的曲線,且面積小于π;④它的圖形是一條封閉的曲線,且面積大于π.真命題的序號(hào)是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓
x2
2
+y2=1的弦被點(diǎn)(
1
2
,
1
2
)平分,則這條弦所在的直線方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長方形ABCD,AB=2
2
,BC=1,以AB的中點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.
(1)求以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程:
(2)過點(diǎn)p(0,2)的直線m與(1)中橢圓只有一個(gè)公共點(diǎn),求直線m的方程:
(3)過點(diǎn)p(0,2)的直線l交(1)中橢圓與M,N兩點(diǎn),是否存在直線l,使得以弦MN為直徑的圓恰好過原點(diǎn)?若存在,直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A(-1,0),B(1,0),過曲線C1:y=x2-1(|x|≥1)上一點(diǎn)M的切線l,與曲線C2:y=-
m(1-x2)
(|x|<1)
也相切于點(diǎn)N,記點(diǎn)M的橫坐標(biāo)為t(t>1).
(1)用t表示m的值和點(diǎn)N的坐標(biāo);
(2)當(dāng)實(shí)數(shù)m取何值時(shí),∠MAB=∠NAB?并求此時(shí)MN所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點(diǎn)(3,1)是拋物線y2=2px(p>0)的一條弦的中點(diǎn),且這條弦所在直線的斜率為2,則p=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線的頂點(diǎn)在原點(diǎn)O,焦點(diǎn)為橢圓
x2
3
+
y2
2
=1的右焦點(diǎn)F.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)P在拋物線上運(yùn)動(dòng),求P到直線y=x+3的距離的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,從橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,又點(diǎn)A是橢圓與x軸正半軸的交點(diǎn),點(diǎn)B是橢圓與y軸正半軸的交點(diǎn),且ABOP,|F1A|=
10
+
5
,
(1)求橢圓E的方程.
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)C,D,且
OC
OD
?若存在,寫出該圓的方程,并求|CD|的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C1
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案