已知函數(shù),
(1)求函數(shù)的最大值和最小值;
(2)設(shè)函數(shù)上的圖象與軸的交點(diǎn)從左到右分別為,圖象的最高點(diǎn)為,
的夾角的余弦.

(1)1,-1;(2).

解析試題分析:(1)先利用兩角和的正弦公式化簡(jiǎn)表達(dá)式,再求最大值和最小值;(2)通過(guò)解三角方程解出的值,即得到點(diǎn)的坐標(biāo),通過(guò)解方程得到最高點(diǎn)的坐標(biāo),所以可以得到的坐標(biāo),再通過(guò)夾角公式求出夾角的余弦值.
試題解析:(1),    3分
,∴,
∴函數(shù)的最大值和最小值分別為1,-1.        5分
(2)解法1:令.   6分
,∴,∴   8分
,且,∴   9分
,    10分
.      12分
解法2:過(guò)點(diǎn)軸于,則    6分
由三角函數(shù)的性質(zhì)知, ,    8分
由余弦定理得.   12分
解法3:過(guò)點(diǎn)軸于,則    6分
由三角函數(shù)的性質(zhì)知,.   8分
中,.   10分
平分,
.   12分
考點(diǎn):1.兩角和的正弦公式;2.解三角方程;3.夾角公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,已知內(nèi)角,邊.設(shè)內(nèi)角的面積為.
(1)求函數(shù)的解析式和定義域;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)設(shè),求的值;
(2)已知,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求的最小正周期;
(Ⅱ)當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).
;
;

;
.
(1)從上述五個(gè)式子中選擇一個(gè),求出常數(shù)
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一個(gè)三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,,其中的內(nèi)角.
(Ⅰ)求角的大小;
(Ⅱ)若,且,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=sin2ωx+sinωxcosωx(ω>0)的最小正周期為π,
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在[0,]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面直角坐標(biāo)系上的三點(diǎn),,),為坐標(biāo)原點(diǎn),向量與向量共線.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)向量
(I)若
(II)設(shè)函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案