已知函數(shù)f(x)=1+x-
x
2
 
2
+
x
3
 
3
-
x
4
 
4
+…+
x
2001
 
2001
,則函數(shù)f(x)在其定義域內(nèi)的零點個數(shù)是( 。
A、0B、lC、2D、3
考點:根的存在性及根的個數(shù)判斷
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:求導(dǎo)f′(x)=1-x+x2-x3+…+x2000,可確定導(dǎo)數(shù)大于0,從而確定零點的個數(shù).
解答: 解:∵f(x)=1+x-
x
2
 
2
+
x
3
 
3
-
x
4
 
4
+…+
x
2001
 
2001

∴f′(x)=1-x+x2-x3+…+x2000,
=(1-x)(1+x2+…+x1998)+x2000,
若x=0,則f′(0)=1,
若x=1,則f′(1)=1;
若x=-1,則f′(-1)=2001;
若x≠0且x≠±1,則
(1-x)(1+x2+…+x1998)+x2000,
=(1-x)
1-x2000
1-x2
+x2000,
=
1-x2000+x2000+x2001
1+x

=
1+x2001
1+x
>0,
故f(x)=1+x-
x
2
 
2
+
x
3
 
3
-
x
4
 
4
+…+
x
2001
 
2001
在R上是增函數(shù),
又∵當x→-∞時,f(x)<0,當x→+∞時,f(x)>0;
故選B.
點評:本題考查了的零點的個數(shù)的判斷,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(nπ+
π
2
+x)=-
1
2
,n∈Z,求cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=2an-n.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
an
an+1
,記數(shù)列{bn}的前n和為Tn,證明:-
1
3
Tn-
n
2
<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,已知a1=1,an+1=
2n+2
n
an(n=1,2,3,…).
(Ⅰ)證明:數(shù)列{
an
n
}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項為1,且滿足an+1=an+2,Sn表示{an}的前n項和.
(1)求an及Sn;
(2)設(shè){bn}是首項為2的等比數(shù)列,公比q滿足q2-(a4+1)q+S4=0,求{bn}的通項公式及其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
3
+
y2
7
=1
的準線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點B,C均在橢圓
x2
3
+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△ABC的周長是( 。
A、4
3
B、6
C、2
3
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,銳角A滿足sin4A-cos4A≤sinA-cosA,則(  )
A、0<A≤
π
6
B、0<A≤
π
4
C、
π
6
≤A≤
π
4
D、
π
4
≤A≤
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,且α∈(
π
2
,π),則tanα等于( 。
A、
4
3
B、
3
4
C、-
4
3
D、-
3
4

查看答案和解析>>

同步練習(xí)冊答案