11.如圖,在△OAB中,P為線段AB上的一點(diǎn),$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,且$\overrightarrow{BP}$=3$\overrightarrow{PA}$,則(  )
A.x=$\frac{1}{4}$,y=$\frac{3}{4}$B.x=$\frac{1}{3}$,y=$\frac{2}{3}$C.x=$\frac{3}{4}$,y=$\frac{1}{4}$D.x=$\frac{2}{3}$,y=$\frac{1}{3}$

分析 根據(jù)向量的基本運(yùn)算以及平面向量的基本定理進(jìn)行表示即可得到結(jié)論.

解答 解:∵$\overrightarrow{BP}$=3$\overrightarrow{PA}$,
∴$\overrightarrow{OP}$-$\overrightarrow{OB}$=3$\overrightarrow{OA}$-3$\overrightarrow{OP}$,
即4$\overrightarrow{OP}$=3$\overrightarrow{OA}$+$\overrightarrow{OB}$,
即$\overrightarrow{OP}$=$\frac{3}{4}$$\overrightarrow{OA}$+=$\frac{1}{4}$$\overrightarrow{OB}$,
∵$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,
∴x=$\frac{3}{4}$,y=$\frac{1}{4}$,
故選:C.

點(diǎn)評(píng) 本題主要考查平面向量基本定理的應(yīng)用,根據(jù)向量的和差運(yùn)算將向量進(jìn)行分解是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,AB∥CD,AD⊥CD,PA=PD=CD=2AB=2.
(1)求證:AB⊥PD;
(2)記AD=x,V(x)表示四棱錐P-ABCD的體積,當(dāng)V(x)取得最大值時(shí),求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx(a≠0)
(1)若b=2,若y=f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點(diǎn),線段AB的中點(diǎn)的橫坐標(biāo)為x0,證明:f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)D在邊BC上,橢圓G以A,D為焦點(diǎn),且經(jīng)過B,C,現(xiàn)以線段AD所在直線為x軸,線段AD的中點(diǎn)O為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.
(1)求橢圓G的方程;
(2)Q($\frac{\sqrt{5}}{2}$,1)為橢圓G內(nèi)的一定點(diǎn),點(diǎn)P是橢圓上的一動(dòng)點(diǎn),求PQ+PD的最值;
(3)設(shè)橢圓G分別與x,y正半軸交于M,N兩點(diǎn),且y=kx(k>0)與橢圓G相交于E、F兩點(diǎn),求四邊形MENF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知兩點(diǎn)A(1,0),B(1,$\sqrt{3}$),O為坐標(biāo)原點(diǎn),點(diǎn)C在第二象限,且∠AOC=120°,設(shè)$\overrightarrow{OC}$=-2$\overrightarrow{OA}$+λ$\overrightarrow{OB}$(λ∈R)則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在直三棱柱ABC-A1B1C1中,已知AA1=BC=AB=2,AB⊥BC.
(1)求四棱錐A1-BCC1B1的體積;
(2)求二面角B1-A1C-C1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,△ABC中,∠ABC=90°,以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接OD交圓O于點(diǎn)M.
(1)求證:O、B、D、E四點(diǎn)共圓;
(2)求證:AB+AC=$\frac{2D{E}^{2}}{DM}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等邊△ABC的邊長(zhǎng)為1,D為邊AC的中點(diǎn),則$\overrightarrow{AB}$•$\overrightarrow{BD}$=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若曲線f(x)在點(diǎn)A(x1,y1)處切線的斜率為kA,曲線y=g(x)在點(diǎn)B(x2,y2)處切線的斜率為kB(x1≠x2),將$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$的值稱為這兩曲線在A,B間的“異線曲度”,記作φ(A,B),現(xiàn)給出以下四個(gè)命題:
①已知曲線f(x)=x3,g(x)=x2-1,且A(1,1),B(2,3),則φ(A,B)>$\frac{\sqrt{2}}{2}$;
②存在兩個(gè)函數(shù)y=f(x),y=g(x),其圖象上任意兩點(diǎn)間的“異線曲度”為常數(shù);
③已知拋物線f(x)=x2+1,g(x)=x2,若x1>x2>0,則φ(A,B)<$\frac{2\sqrt{5}}{5}$;
④對(duì)于曲線f(x)=ex,g(x)=e-x,當(dāng)x1-x2=1時(shí),若存在實(shí)數(shù)t,使得t•φ(A,B)>1恒成立,則t的取值范圍是[1,+∞].
其中正確命題的個(gè)數(shù)是②③.

查看答案和解析>>

同步練習(xí)冊(cè)答案