寫出下列各角終邊相同的角的集合S,并把S中在-360°~720°的角寫出來
(1)60°   (2)-20°.
考點:終邊相同的角
專題:三角函數(shù)的求值
分析:利用與α終邊相同的角度為k•360°+α(k∈Z)即可得到答案.
解答: 解:(1)∵與60°角終邊相同的角為:S={α|α=k•360°+60°,(k∈Z)}
∵-360°≤α<720°,
∴k=-1時,α=-300°,
k=0時,α=60°,
k=1時,α=420°.
(2)∵與-20°角終邊相同的角為:S={α|α=k•360°-20°,(k∈Z)}
∵-360°≤α<720°,
∴k=0時,α=-20°,
k=1時,α=340°,
k=2時,α=700°.
點評:本題考查與α終邊相同的角的公式,考查理解與應(yīng)用的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y,z均為正數(shù),且x+y+z=1,求證:
yz
x
+
xz
y
+
xy
z
≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某物流公司送貨員從公司A處準(zhǔn)備開車送貨到某單位B處,若該地各路段發(fā)生堵車事件都是獨立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖所示(例如A→C→D算作兩個路段:路段AC發(fā)生堵車事件的概率為
1
6
,路段CD發(fā)生堵車事件的概率為
1
10
…)
(1)請你為其選擇一條由A到B的路線,使得途中發(fā)生堵車事件的概率最小;
(2)若記路線A→C→F→B中遇到堵車的次數(shù)為隨機變量ξ,求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(cosα,sinα),
b
=(cosβ,sinβ)

(1)求證:(
a
+
b
)⊥(
a
-
b
)
;
(2)當(dāng)β=
3
,α∈[0,π]時,向量
3
a
+
b
a
-
3
b
的模相等,求角α;
(3)向量
a
,
b
滿足|k
a
+
b
|=
3
|
a
-k
b
|
,k>0,將
a
b
的數(shù)量積表示為關(guān)于k的函數(shù)f(k),求f(k)的最小值及取得最小值時
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:sinαcosβ+cosαsinβ=sin2α+sin2β,求證:α+β=
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
x-y+6≥0
x≤3
x+y+k≥0
,且z=2x+4y的最小值為6,則常數(shù)k=
 
;z=2x+4y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的導(dǎo)數(shù)是f′(x)=2x-1,且f(1)=2,求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},設(shè)bn=(
1
2
 an,又已知b1+b2+b3=
21
8
,b1•b2•b3=
1
8
,
(1)求數(shù)列{an}的通項公式
(2)若數(shù)列{an}是遞減數(shù)列,求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式為an=logn+1(n+2),則它前14項的積為 4.

查看答案和解析>>

同步練習(xí)冊答案