4.已知f(x)在R上是奇函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈(0,2)時,f(x)=2x2,則f(7)=( 。
A.2B.-2C.-98D.98

分析 利用函數(shù)的周期性、奇偶性求解.

解答 解:∵f(x)在R上是奇函數(shù),且滿足f(x+4)=f(x),
當(dāng)x∈(0,2)時,f(x)=2x2
∴f(7)=f(-1)=-f(1)=-2.
故選:B.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在正三棱柱中,AB=6,BB1=5.求它的側(cè)面積、體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知x∈R,設(shè)$\vec m=(2cosx\;,\;sinx+cosx)$,$\vec n=(\sqrt{3}sinx\;,\;sinx-cosx)$,記函數(shù)$f(x)=\vec m•\vec n$.
(1)求函數(shù)f(x)取最小值時x的取值范圍;
(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若f(C)=2,$c=\sqrt{3}$,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知i為虛數(shù)單位,復(fù)數(shù)$\frac{2+4i}{i}$=( 。
A.4-2iB.4+2iC.-4-2iD.-4+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在矩形ABCD中,AB=$\sqrt{5}$,BC=$\sqrt{3}$,P為矩形內(nèi)一點(diǎn),且AP=$\frac{\sqrt{5}}{2}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),則$\sqrt{5}$λ+$\sqrt{3}$μ的最大值為(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{10}}{2}$C.$\frac{3+\sqrt{3}}{4}$D.$\frac{\sqrt{6}+3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知定義在R上的函數(shù)f(x)=|x-m|+|x|,m∈N*,存在實數(shù)x使f(x)<2成立.
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若α,β>1,f(α)+f(β)=2,求證:$\frac{4}{α}$+$\frac{1}{β}$≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},則B的子集個數(shù)為(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中角A,B,C所對的邊分別是a,b,c,b=$\sqrt{2}$,c=1,cosB=$\frac{3}{4}$.
(1)求sinC的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對角線的長為$\sqrt{3}$的正方體的表面積為6.

查看答案和解析>>

同步練習(xí)冊答案