【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),當(dāng)二面角C1﹣AA1﹣B為45o時(shí),直線EF和BC1所成的角為( )
A.45o
B.60o
C.90o
D.120o
【答案】B
【解析】解:如圖,
∵三棱柱ABC﹣A1B1C1中是直三棱柱,∴AA1⊥平面A1B1C1 ,
則A1C1⊥AA1 , A1B1⊥AA1 , ∴∠B1A1C1為二面角C1﹣AA1﹣B的平面角等于45o ,
∵∠A1B1C1=∠ABC=45°,且A1B1=AB=2,
∴B1C1=BC=2.
以B為原點(diǎn),分別以BC,BA,BB1所在直線為x,y,z軸建立空間直角坐標(biāo)系,
則B(0,0,0),E(0,1,0),C1(2,0,2),F(xiàn)(0,0,1).
∴ , ,
∴cos< >= ,
∴ 與 的夾角為60°,即直線EF和BC1所成的角為60°.
故選:B.
【考點(diǎn)精析】利用異面直線及其所成的角對(duì)題目進(jìn)行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:關(guān)于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(x2﹣x+a)的定義域?yàn)镽,若p∨q為真p∧q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)a,b的值;
(2)判斷并證明f(x)在(﹣∞,+∞)上的單調(diào)性;
(3)若對(duì)任意實(shí)數(shù)t∈R,不等式f(kt2﹣kt)+f(2﹣kt)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是棱長(zhǎng)為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求三棱錐B﹣EFC的體積;
(3)求二面角P﹣EC﹣D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為 -1.以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)M(2,0)的直線與橢圓C相交于A,B兩點(diǎn),P為橢圓上一點(diǎn),且滿足 + =t (O為坐標(biāo)原點(diǎn)).當(dāng)|AB|= 時(shí),求實(shí)數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣2x﹣1=0,直線l:3x﹣4y+12=0,圓C上任意一點(diǎn)P到直線l的距離小于2的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2 ,求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x)滿足在(﹣∞,0)上為增函數(shù)且f(﹣1)=0,則不等式xf(x)>0的解集為( )
A.(﹣∞,﹣1)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣1,0)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式lg ≥(x﹣1)lg3對(duì)任意x∈(﹣∞,1]恒成立,則a的取值范圍是( )
A.(﹣∞,0]
B.[1,+∞)
C.[0,+∞)
D.(﹣∞,1]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com