已知a<0,-1<b<0,那么下列不等式成立的是(  )

A.a(chǎn)>ab>ab2 B.a(chǎn)b2>ab>a

C.a(chǎn)b>a>ab2 D.a(chǎn)b>ab2>a

 

D

【解析】∵a<0,-1<b<0,∴ab2-a=a(b2-1)>0,ab-ab2=ab(1-b)>0.

∴ab>ab2>a.

也可利用特殊值法,取a=-2,b=-,

則ab2=-,ab=1,

從而ab>ab2>a.

故應(yīng)選D.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-6直接證明與間接證明(解析版) 題型:選擇題

若a,b∈R,則下面四個(gè)式子中恒成立的是(  )

A.lg(1+a2)>0 B.a(chǎn)2+b2≥2(a-b-1)

C.a(chǎn)2+3ab>2b2 D. <

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-2一元二次不等式及其解法(解析版) 題型:解答題

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.

(1)求證:函數(shù)y=f(x)必有兩個(gè)不同的零點(diǎn);

(2)若函數(shù)y=f(x)的兩個(gè)零點(diǎn)分別為m,n,求|m-n|的取值范圍;

(3)是否存在這樣的實(shí)數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域?yàn)閇-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-1不等關(guān)系與不等式(解析版) 題型:填空題

已知1≤lg(xy)≤4,-1≤lg≤2,則lg的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-1不等關(guān)系與不等式(解析版) 題型:填空題

已知實(shí)數(shù)a滿足ab2>a>ab,則實(shí)數(shù)b的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-5數(shù)列的綜合應(yīng)用(解析版) 題型:填空題

定義:稱為n個(gè)正數(shù)x1,x2,…,xn的“平均倒數(shù)”,若正項(xiàng)數(shù)列{cn}的前n項(xiàng)的“平均倒數(shù)”為,則數(shù)列{cn}的通項(xiàng)公式為cn=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-5數(shù)列的綜合應(yīng)用(解析版) 題型:選擇題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )

A.12 B.14 C.16 D.18

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:選擇題

若數(shù)列{an}為等比數(shù)列,且a1=1,q=2,則Tn =+…+的結(jié)果可化為(  )

A.1- B.1-

C.(1-) D. (1-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡單表示法(解析版) 題型:選擇題

已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的n∈N*有Sn=an-,且1<Sk<12,則k的值為(  )

A.2 B.2或4 C.3或4 D.6

 

查看答案和解析>>

同步練習(xí)冊答案