若數(shù)列{an}為等比數(shù)列,且a1=1,q=2,則Tn =+…+的結(jié)果可化為(  )

A.1- B.1-

C.(1-) D. (1-)

 

C

【解析】an=2n-1,設(shè)bn==()2n-1,

則Tn=b1+b2+…+bn

+()3+…+()2n-1

(1-).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-4基本不等式(解析版) 題型:解答題

已知lg(3x)+lgy=lg(x+y+1).

(1)求xy的最小值;

(2)求x+y的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-1不等關(guān)系與不等式(解析版) 題型:選擇題

已知a<0,-1<b<0,那么下列不等式成立的是(  )

A.a(chǎn)>ab>ab2 B.a(chǎn)b2>ab>a

C.a(chǎn)b>a>ab2 D.a(chǎn)b>ab2>a

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:填空題

在數(shù)列{an}中,a1=2,an+an+1=1(n∈N*),設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,則S2007-2S2006+S2005的值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:填空題

設(shè)數(shù)列{an}的首項(xiàng)a1=,前n項(xiàng)和為Sn,且滿足2an+1+Sn=3(n∈N*),則滿足<<的所有n的和為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:解答題

已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)Tn=Sn- (n∈N*),求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若=3,則=(  )

A.2 B. C. D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡(jiǎn)單表示法(解析版) 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足=3n-2.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:選擇題

已知平面向量a,b,|a|=1,|b|=,且|2a+b|=,則向量a與向量a+b的夾角為(  )

A. B. C. D.π

 

查看答案和解析>>

同步練習(xí)冊(cè)答案