11.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$,則目標(biāo)函數(shù)z=4x+y-2的最大值為( 。
A.1B.2C.6D.4

分析 先畫出約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$的可行域,再求出可行域中各角點的坐標(biāo),將各點坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)z=4x+2y的最大值.

解答 解:由約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$,得如圖所示的三角形區(qū)域,
三個頂點坐標(biāo)為A(1,4),B(1,0),C(0,1)
將三個代入z=4x+y-2,得z的值分別為6,2,-1.
直線z=4x+y-2過點A (1,4)時,z取得最大值為:6;
故選:C,

點評 在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗證,求出最優(yōu)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={-1,1,2,3,4},B={-2,-1,0,1,2},則A∩B( 。
A.{3,4}B.{-2,3}C.{-2,4}D.{-1,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若${∫}_{0}^{a}$xdx=2,則常數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在一個封閉的直三棱柱ABC-A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,AC=10,AA1=3,則球的體積的最大值為( 。
A.$\frac{32π}{3}$B.C.D.$\frac{9π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某學(xué)校舉行的演講比賽有七位評委,如圖是評委們?yōu)槟尺x手給出分數(shù)的莖葉圖,根據(jù)規(guī)則去掉一個最高分和一個最低分.則此所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A.84,4.84B.84,1.6C.85,4D.85,1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:方程$\frac{x^2}{2-t}+\frac{y^2}{2+t}=1$所表示的曲線為焦點在x軸上的橢圓;命題q:實數(shù)t滿足不等式t2-(a+2)t+2a<0.
(1)若命題p為真,求實數(shù)t的取值范圍;
(2)若“命題p為真”是“命題q為真”的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=a(x-1)-lnx(a∈R),g(x)=ex-x-1.
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若對任意x∈[1,+∞),存在x0∈R,使得f(x)≥g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是某幾何體的三視圖,則該幾何體的體積為( 。
A.6B.9C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|-1≤x<3},B={2<x≤5},則A∩B=( 。
A.(2,3)B.[2,3]C.(-1,5)D.[-1,5]

查看答案和解析>>

同步練習(xí)冊答案