在三角形ABC中,
AB
AC
=|
BC
|=8,M為BC邊的中點,則中線AM的長為( 。
A、2
5
B、2
6
C、2
7
D、6
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:由M為BC邊的中點,可得
AM
=
1
2
(
AB
+
AC
)
,再利用數(shù)量積的性質(zhì)即可得出.
解答: 解:∵M為BC邊的中點,
AM
=
1
2
(
AB
+
AC
)
,
AM
2
=
1
4
(
AB
2
+
AC
2
+2
AB
AC
)

=
1
4
(82+82+2×8)

=36.
|
AM
|=6

故選:D.
點評:本題考查了向量的平行四邊形法則、數(shù)量積運算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時,
1
x
∈A.則稱集合A是“好集”.
(1)集合B={-1,0,1}是好集;
(2)有理數(shù)集Q是“好集”;
(3)設(shè)集合A是“好集”,若x,y∈A,則x+y∈A;
(4)設(shè)集合A是“好集”,若x,y∈A,且xy≠0則必有
x-y
xy
∈A;
則上述命題正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2013)+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,acosB+bcosA=2ccosA,tanB=3tanC,則
AC
AB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足(x+2)•f′(x)<0(其中f′(x)是函數(shù)f(x)的導(dǎo)數(shù)),又a=f(log23),b=f(1),c=f(ln3),則(  )
A、a<c<b
B、b<c<a
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為F、G,且F是G的真子集,若對任意的x∈F,都有g(shù)(x)=f(x),則稱g(x)為f(x)在G上的一個“延拓函數(shù)”,已知函數(shù)f(x)=(
1
2
x(x≤0),若g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是偶函數(shù),則函數(shù)g(x)的解析式為( 。
A、g(x)=(
1
2
|x|
B、g(x)=2|x|
C、g(x)=log2|x|
D、g(x)=log 
1
2
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x-4與拋物線y2=2x所圍成的圖形面積是( 。
A、15B、16C、17D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合P中的元素都是整數(shù),并且滿足條件:
①P中有正數(shù),也有負數(shù);
②P中有奇數(shù),也有偶數(shù);
③-1∉P;
④若x,y∈P,則x+y∈P.
下面判斷正確的是( 。
A、0∉P,2∈P
B、0∈P,2∈P
C、0∈P,2∉P
D、0∉P,2∉P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

問題:有1000個乒乓球分別裝在3個箱子里,其中紅色箱子內(nèi)有500個,藍色箱子內(nèi)有200個,黃色箱子內(nèi)有300個,現(xiàn)從中抽取一個容量為100的樣本:方法Ⅰ:隨機抽樣法Ⅱ:系統(tǒng)抽樣法Ⅲ:分層抽樣法.其中問題與方法能配對的是( 。
A、ⅠB、ⅡC、ⅢD、Ⅱ或Ⅲ

查看答案和解析>>

同步練習(xí)冊答案