8.已知函數(shù)f(x)=ex-ax2-2x-1(x∈R).
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)求證:對(duì)任意的實(shí)數(shù)a<0,不等式f(x)-$\frac{1}{3}$a3+2>0恒成立.

分析 (1)求出函數(shù)f(x)的導(dǎo)函數(shù)f′(x),解出f′(x)>0和f′(x)<0,從而求出函數(shù)f(x)的單調(diào)區(qū)間;
(2)構(gòu)造新的函數(shù),判斷函數(shù)的單調(diào)性求出函數(shù)的最值,從而證明不等式.

解答 解:(1)當(dāng)a=0時(shí),f(x)=ex-2x-1(x∈R),
∵f′(x)=ex-2,且f′(x)的零點(diǎn)為x=ln2,
∴當(dāng)x∈(-∞,ln2)時(shí),f′(x)<0;
當(dāng)x∈(ln2,+∞)時(shí),f′(x)>0
即(-∞,ln2)是f(x)的單調(diào)減區(qū)間,(ln2,+∞)是f(x)的單調(diào)增區(qū)間.
(2)由f(x)-$\frac{1}{3}$a3+2>0得f(x)>$\frac{1}{3}$a3-2成立,
由f(x)=ex-ax2-2x-1(x∈R)得,f′(x)=ex-2ax-2,
記g(x)=ex-2ax-2(x∈R),
∵a<0,∴g′(x)=ex-2a>0,即f′(x)=g(x)是R上的單調(diào)遞增函數(shù),
又f′(0)=-1<0,f′(1)=e-2a-2>0,
故R上存在唯一的x0∈(0,1),使得f′(x0)=0,且當(dāng)x<x0時(shí),f′(x)<0;當(dāng)x>x0時(shí),
f′(x)>0,即f(x)在(-∞,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,
則f(x)min=f(x0)=ex0-ax0-1,
再由f′(x0)=0得ex0=2ax0+2,將其代入前式可得,
f(x)min=$-a{{x}_{0}}^{2}+2(a-1){x}_{0}+1$,
又令h(x0)=$-a{{x}_{0}}^{2}+2(a-1){x}_{0}+1$=-a$({x}_{0}-\frac{a-1}{a})^{2}+\frac{(a-1)^{2}}{a}+1$,
由于-a>0,對(duì)稱軸$x=\frac{a-1}{a}>1$,而x0∈(0,1),
∴h(x0)>h(1)=a-1,
又a-1-($\frac{1}{3}$a3-2)=-$\frac{1}{3}$a3+a+1,
設(shè)m(a)=-$\frac{1}{3}$a3+a+1,
則m′(a)=-a2+1,
由m′(a)>0得-1<a<0,
由m′(a)<0得a<-1,
∴當(dāng)a=-1時(shí),函數(shù)m(a)取得極小值m(-1)=-$\frac{1}{3}$(-1)3-1+1=$\frac{1}{3}$>0,
∴a-1>($\frac{1}{3}$a3-2),
故對(duì)任意實(shí)數(shù)a<0,不等式f(x)-$\frac{1}{3}$a3+2>0恒成立.

點(diǎn)評(píng) 本題是一道導(dǎo)數(shù)的綜合題,考查了函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系以及,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,等價(jià)轉(zhuǎn)化思想,不等式的證明.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)M={0,1},N={11-a,1ga,2a,a},是否存在實(shí)數(shù)a,使得M∩N={1}?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.化簡(jiǎn):
(1)1g52+$\frac{2}{3}$1g8+1g51g20+(lg2)2;
(2)(1og25+log40.2)(log52+log250.5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=$\sqrt{4-{x}^{2}}$-$\frac{2}{lg(x+1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-2,0)∪(0,2]B.[-2,2]C.(-1,2]D.(-1,0)∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)集合A={x|(x-3)(x-a)=0},B={x|x2-5x+4=0},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2+bx+4滿足f(1+x)=f(1-x),且函數(shù)g(x)=ax(a>0且a≠1)與函數(shù)y=log3x互為反函數(shù).
(1)求函數(shù)f(x),g(x)的解析式;
(2)函數(shù)y=f(g(x))-m在x∈[-1,2]上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)y=f(x)為R上的奇函數(shù),且f(x+2)=f(x),當(dāng)0<x≤1時(shí),f(x)=2x,若常數(shù)a∈(3,4],則f(a)=-24-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求函數(shù)y=($\frac{1}{3}$)${\;}^{{x}^{2}-4x}$的定義域、值域、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.兩平行線3x+4y-2=0和6x+8y+7=0之間的距離是$\frac{11}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案