分析 (1)求出函數(shù)f(x)的導(dǎo)函數(shù)f′(x),解出f′(x)>0和f′(x)<0,從而求出函數(shù)f(x)的單調(diào)區(qū)間;
(2)構(gòu)造新的函數(shù),判斷函數(shù)的單調(diào)性求出函數(shù)的最值,從而證明不等式.
解答 解:(1)當(dāng)a=0時(shí),f(x)=ex-2x-1(x∈R),
∵f′(x)=ex-2,且f′(x)的零點(diǎn)為x=ln2,
∴當(dāng)x∈(-∞,ln2)時(shí),f′(x)<0;
當(dāng)x∈(ln2,+∞)時(shí),f′(x)>0
即(-∞,ln2)是f(x)的單調(diào)減區(qū)間,(ln2,+∞)是f(x)的單調(diào)增區(qū)間.
(2)由f(x)-$\frac{1}{3}$a3+2>0得f(x)>$\frac{1}{3}$a3-2成立,
由f(x)=ex-ax2-2x-1(x∈R)得,f′(x)=ex-2ax-2,
記g(x)=ex-2ax-2(x∈R),
∵a<0,∴g′(x)=ex-2a>0,即f′(x)=g(x)是R上的單調(diào)遞增函數(shù),
又f′(0)=-1<0,f′(1)=e-2a-2>0,
故R上存在唯一的x0∈(0,1),使得f′(x0)=0,且當(dāng)x<x0時(shí),f′(x)<0;當(dāng)x>x0時(shí),
f′(x)>0,即f(x)在(-∞,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,
則f(x)min=f(x0)=ex0-ax0-1,
再由f′(x0)=0得ex0=2ax0+2,將其代入前式可得,
f(x)min=$-a{{x}_{0}}^{2}+2(a-1){x}_{0}+1$,
又令h(x0)=$-a{{x}_{0}}^{2}+2(a-1){x}_{0}+1$=-a$({x}_{0}-\frac{a-1}{a})^{2}+\frac{(a-1)^{2}}{a}+1$,
由于-a>0,對(duì)稱軸$x=\frac{a-1}{a}>1$,而x0∈(0,1),
∴h(x0)>h(1)=a-1,
又a-1-($\frac{1}{3}$a3-2)=-$\frac{1}{3}$a3+a+1,
設(shè)m(a)=-$\frac{1}{3}$a3+a+1,
則m′(a)=-a2+1,
由m′(a)>0得-1<a<0,
由m′(a)<0得a<-1,
∴當(dāng)a=-1時(shí),函數(shù)m(a)取得極小值m(-1)=-$\frac{1}{3}$(-1)3-1+1=$\frac{1}{3}$>0,
∴a-1>($\frac{1}{3}$a3-2),
故對(duì)任意實(shí)數(shù)a<0,不等式f(x)-$\frac{1}{3}$a3+2>0恒成立.
點(diǎn)評(píng) 本題是一道導(dǎo)數(shù)的綜合題,考查了函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系以及,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,等價(jià)轉(zhuǎn)化思想,不等式的證明.綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com