15.若正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是( 。
A.(3,9]B.[9,+∞)C.[9,27]D.[27,+∞)

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:ab=a+b+3≥2$\sqrt{ab}$+3,化為:$(\sqrt{ab})^{2}$-2$\sqrt{ab}$-3≥0,解得$\sqrt{ab}$≥3,即ab≥9.當(dāng)且僅當(dāng)a=b=3時(shí)取等號.
∴ab的取值范圍是[9,+∞).
故選:B.

點(diǎn)評 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.i2016=( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計(jì)
男生10
女生20
合計(jì)
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上述列聯(lián)表補(bǔ)充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(2)針對于問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識宣傳組,并在這6人中任選2人作為宣傳組的組長,設(shè)這兩人中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=ln$\frac{3x}{2}$-$\frac{2}{x}$的零點(diǎn)一定位于區(qū)間( 。
A.(0,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)的定義域?yàn)閇-1,1],圖象如圖1所示;函數(shù)g(x)的定義域?yàn)閇-2,2],圖象如圖2所示,方程f[g(x)]=0有m個(gè)實(shí)數(shù)根,方程g[f(x)]=0有n個(gè)實(shí)數(shù)根,則m+n=14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-6x+a,則不等式f(x)<|x|的解集是( 。
A.(0,7)B.(-5,7)C.(-5,0)D.(-∞,-5)∪(0,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列各式的值:
(1)$\frac{1+tan75°}{1-tan75°}$;
(2)tan17°+tan28°+tan17°tan28°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若角α滿足cosα>0,tanα<0,則α為第四象限的角.

查看答案和解析>>

同步練習(xí)冊答案