6.若變量x,y滿足約束條件$\left\{\begin{array}{l}4x+3y≤12\\ x≥0\\ y≥0\end{array}$,則z=$\frac{y+3}{x+1}$的取值范圍是[$\frac{3}{4}$,7].

分析 作出不等式組對應的平面區(qū)域,利用z的幾何意義結(jié)合直線的斜率公式進行求解即可.

解答 解:作出不等式組對應的平面區(qū)域,
z=$\frac{y+3}{x+1}$的幾何意義是區(qū)域內(nèi)的點到定點(-1,-3)的斜率,
由圖象知DA的斜率最大,DB的斜率最小,
∵A(0,4),B(3,0),
∴z的最大值為z=$\frac{4+3}{1}=7$,z的最小值為z=$\frac{0+3}{3+1}$=$\frac{3}{4}$,
即,z=$\frac{y+3}{x+1}$的取值范圍是[$\frac{3}{4}$,7],
故答案為:[$\frac{3}{4}$,7].

點評 本題主要考查線性規(guī)劃的應用,利用直線斜率的幾何意義以及數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,且滿足2Sn=n-n2(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\left\{\begin{array}{l}{2^{a_n}},({n=2k-1})\\ \frac{2}{{({1-{a_n}})({1-{a_{n+2}}})}},({n=2k})\end{array}\right.$(k∈N*),求數(shù)列{bn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.某學校共有師生2400人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為150的樣本,已知從學生中抽取的人數(shù)為135,那么該學校的教師人數(shù)是240.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.由曲線y=$\sqrt{x}$,y=x-2及x軸所圍成的封閉圖形的面積是(  )
A.4B.$\frac{10}{3}$C.$\frac{16}{3}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)全集U=R,已知集合A={-2,-1,0,1,2,3},B={x|x2+x-2≥0},則集合A∩∁UB=(  )
A.{-1,0}B.{-1,0,1}C.{-2,-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC是邊長為2的正三角形,D是AC的中點.
(Ⅰ)求證;B1C∥平面A1BD;
(Ⅱ)若直線AB1與平面A1BD所成的角的正弦值為$\frac{\sqrt{21}}{7}$,求此三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知等比數(shù)列{an}的公比為正數(shù),且4a2a8=a42,a2=1,則a6=(  )
A.$\frac{1}{8}$B.$\frac{1}{16}$C.$\frac{1}{32}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)α、β、γ是三個不同的平面,a、b是兩條不同的直線,下列四個命題中正確的是( 。
A.若a∥α,b∥α,則a∥b
B.若a⊥α,b⊥β,a⊥b,則α⊥β
C.若a∥α,b∥β,a∥b,則α∥β
D.若a,b在平面α內(nèi)的射影互相垂直,則a⊥b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.方程$\frac{1}{1-x}$=cos$\frac{πx}{2}$在[-2,4]內(nèi)的所有根之和為( 。
A.8B.6C.4D.0

查看答案和解析>>

同步練習冊答案